ترغب بنشر مسار تعليمي؟ اضغط هنا

التغييرات في تويتر الجغرافيين: رؤى واقتراحات للاستخدام في المستقبل

Changes in Twitter geolocations: Insights and suggestions for future usage

269   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أصبحت بيانات Twitter مثبتة كمصدر قيم للبيانات لمختلف سيناريوهات التطبيق في السنوات الماضية.بالنسبة للعديد من هذه التطبيقات، من الضروري معرفة المكان الذي تم إرسال مشاركات Twitter (تغريدات) من أو الموقع الذي يشير إليه.كثيرا ما استخدم الباحثون الإحداثيات الدقيقة المقدمة في نسبة مئوية صغيرة من التغريدات، لكن Twitter أزال الخيار لمشاركة هذه الإحداثيات في منتصف عام 2019.علاوة على ذلك، هناك سبب للشك في أن حصة كبيرة من الإحداثيات المقدمة لم تتوافق مع إحداثيات GPS للمستخدم حتى قبل ذلك.في هذه الورقة، نوضح الوضع وتغيير السياسة لعام 2019 وإلقاء الضوء على الخيارات المختلفة التي لا تزال تحصل على معلومات الموقع من التغريدات.نحن نقدم إحصاءات الاستخدام بما في ذلك التغييرات مع مرور الوقت، وتحليل ما إن إزالة الإحداثيات الدقيقة يعني لمختلف مهام البحث الشائعة التي يتم تنفيذها مع بيانات Twitter.أخيرا، نقدم اقتراحات للأبحاث المستقبلية التي تتطلب التغريدات الجغرافية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

قمنا بإحضار البيانات من صفحات مواقع التواصل الاجتماعي تويتر، ثم عملنا عليها عملية تنظيف و تجهيز للنص من أجل عملية التصنيف فالنصوص المسترجعة تحتوي على الكثير من الضجيج و المعلومات غير المفيدة المتعلقة بعملية تحليل الآراء مثل الاعلانات و الروابط و ع ناوين البريد الالكتروني و وجود العديد من الكلمات التي لا تؤثر على التوجه العام للنص، و بعد الحصول على كل المنشورات في صفحة الفيسبوك و ما هي التعليقات الخاصة حول كل المنشور المراد معرفة النسبة المئوية للآراء الإيجابية و الآراء السلبية له. طبّقنا خوارزمية بايز في التصنيف و أجرينا عليها التدريب المناسب و بعد تمرير بيانات التغريدات (الآراء) حصلنا على نتائج جيدة حول نسبة المؤيدين للمنشور و نسبة المعارضين له.
جذبت الكشف عن المشاعر من وظائف وسائل التواصل الاجتماعي اهتماما ملحوظا من مجتمع معالجة اللغة الطبيعية (NLP) في السنوات الأخيرة.تختلف طرق الحصول على ملصقات ذهبية لتدريب واختبار أنظمة الكشف عن المشاعر التلقائية بشكل كبير من دراسة واحدة إلى أخرى، وتشكل م سألة موثوقية الملصقات الذهبية وتحصل على نتائج التصنيف.تستكشف هذه الدراسة بشكل منهجي عدة طرق للحصول على ملصقات ذهبية لنموذج EKMAN الخاص ببيانات Twitter وتأثير الاستراتيجية المختارة في نتائج التصنيف اليدوي.
توفر منصات الوسائط الاجتماعية (SM) مثل Twitter كميات كبيرة من البيانات في الوقت الفعلي والتي يمكن الاستفادة منها أثناء حالات الطوارئ الجماعية. تتطلب تطوير أدوات لدعم المجتمعات المتأثرة بالأزمات مجموعات البيانات المتاحة، والتي غالبا ما تكون موجودة لغا ت الموارد المنخفضة. تقدم هذه الورقة Kawarith A Corpus عربي لهي تيتر من أجل أحداث الأزمات، تضم أكثر من مليون تغريدات عربية تم جمعها خلال 22 أزمات حدثت بين عامي 2018 و 2020 وشمل عدة أنواع من الخطر. كشف استكشاف هذا المحتوى عن أهم المواضيع وأنواع المعلومات، وتقدم الورقة مجموعة بيانات معدنية من سبعة أحداث طارئة تعمل كمعيار ذهبي للعديد من المهام في أبحاث المعلوماتية للأزمات. استخدام البيانات المشروحة من نفس الحدث، يكون نموذج BERT يتم ضبطه جيدا لتصنيف تغريدات إلى فئات مختلفة في الإعداد متعدد الملصقات. تظهر النتائج أن النماذج القائمة على بيرت تسفر عن أداء جيد في هذه المهمة حتى مع كميات صغيرة من بيانات التدريب الخاصة بمهام المهام.
يستلزم الكشف عن الموقف (SD) تصنيف معنويات نص تجاه هدف معين، وهي مهمة فرعية ذات صلة لتحليل تعدين الرأي والوسائط الإعلامية الاجتماعية.وقد استكشفت الأعمال الحديثة تسريب المعرفة تكمل الكفاءة اللغوية والمعرفة الكامنة عن النماذج اللغوية الكبيرة المدربة مسب قا مع الرسوم البيانية المعرفة المهيكلة (KGS)، ومع ذلك فقد طبقت القليل من الأعمال هذه الأساليب إلى مهمة SD.في هذا العمل، نقوم أولا بتحقيق المعرفة ذات الصلة بالموقف على النماذج المدربة المستندة مسبقا للمحولات في إعداد تسديدة صفرية، مما يدل على المعرفة الحقيقية الكامنة في النماذج حول أهداف SD وحساستها للسياق.ثم ندرب وتقييم نماذج الكشف عن الموقف المخصب على المعرفة على مجموعة بيانات لموقف Twitter، وتحقيق أداء حديثة على حد سواء.
تهدف آلية الخروج المبكر إلى تسريع سرعة الاستدلال من نماذج اللغة المدربة مسبقا على نطاق واسع. الفكرة الأساسية هي الخروج مبكرا دون المرور من خلال كل طبقات الاستدلال في مرحلة الاستدلال. لإجراء تنبؤات دقيقة لمهام المصب، ينبغي النظر في المعلومات اللغوية ا لهرمية المدمجة في جميع الطبقات بشكل مشترك. ومع ذلك، فقد تقتصر الكثير من الأبحاث الآن على استخدام التمثيلات المحلية لطبقة الخروج. هذا العلاج يفقد حتما معلومات عن الطبقات السابقة غير المستخدمة وكذلك الميزات الرفيعة المستوى المضمنة في الطبقات المستقبلية، مما يؤدي إلى الأداء دون الأمثل. لمعالجة هذه المشكلة، نقترح طريقة مستقبلية جديدة جديدة لإجراء تنبؤات شاملة من منظور عالمي. نأخذ أولا في الاعتبار جميع المعلومات اللغوية المضمنة في الطبقات السابقة، ثم اتخذ خطوة أخرى لإشراك المعلومات المستقبلية التي لا يمكن الوصول إليها في الأصل للتنبؤات. توضح تجارب واسعة أن أسلوبنا تتفوق على أساليب الخروج المبكر السابقة من هامش كبير، مما يؤدي إلى أداء أفضل وقوي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا