ﻻ يوجد ملخص باللغة العربية
We show that non-local resources cannot be used for probabilistic signalling even if one can produce exact clones with the help of a probabilistic quantum cloning machine (PQCM). We show that PQCM cannot help to distinguish two statistical mixtures at a remote location. Thus quantum theory rules out the possibility of sending superluminal signals not only deterministically but also probabilistically. We give a bound on the success probability of producing multiple clones in an entangled system.
The method of quantum cloning is divided into two main categories: approximate and probabilistic quantum cloning. The former method is used to approximate an unknown quantum state deterministically, and the latter can be used to faithfully copy the s
We propose a probabilistic quantum cloning scheme using Greenberger-Horne-Zeilinger states, Bell basis measurements, single-qubit unitary operations and generalized measurements, all of which are within the reach of current technology. Compared to an
Probabilistic quantum cloning and identifying machines can be constructed via unitary-reduction processes [Duan and Guo, Phys. Rev. Lett. 80, 4999 (1998)]. Given the cloning (identifying) probabilities, we derive an explicit representation of the uni
Steering is a physical phenomenon which is not restricted to quantum theory, it is also present in more general, no-signalling theories. Here, we study steering from the point of view of no-signalling theories. First, we show that quantum steering in
The impossibility of superluminal communication is a fundamental principle of physics. Here we show that this principle underpins the performance of several fundamental tasks in quantum information processing and quantum metrology. In particular, we