ﻻ يوجد ملخص باللغة العربية
Probabilistic quantum cloning and identifying machines can be constructed via unitary-reduction processes [Duan and Guo, Phys. Rev. Lett. 80, 4999 (1998)]. Given the cloning (identifying) probabilities, we derive an explicit representation of the unitary evolution and corresponding Hamiltonian to realize probabilistic cloning (identification). The logic networks are obtained by decomposing the unitary representation into universal quantum logic operations. The robustness of the networks is also discussed. Our method is suitable for a $k$-partite system, such as quantum computer, and may be generalized to general state-dependent cloning and identification.
We propose a probabilistic quantum cloning scheme using Greenberger-Horne-Zeilinger states, Bell basis measurements, single-qubit unitary operations and generalized measurements, all of which are within the reach of current technology. Compared to an
The method of quantum cloning is divided into two main categories: approximate and probabilistic quantum cloning. The former method is used to approximate an unknown quantum state deterministically, and the latter can be used to faithfully copy the s
We review our recent work on the universal (i.e. input state independent) optimal quantum copying (cloning) of qubits. We present unitary transformations which describe the optimal cloning of a qubit and we present the corresponding quantum logical n
We propose a scheme to enhance the fidelity of symmetric quantum cloning machine using a weak measurement. By adjusting the intensity of weak measurement parameter $p$, we obtain the copies with different optimal fidelity. Choosing proper value of $p
An application of quantum cloning to optimally interface a quantum system with a classical observer is presented, in particular we describe a procedure to perform a minimal disturbance measurement on a single qubit by adopting a 1->2 cloning machine