ﻻ يوجد ملخص باللغة العربية
A typical oracle problem is finding which software program is installed on a computer, by running the computer and testing its input-output behaviour. The program is randomly chosen from a set of programs known to the problem solver. As well known, some oracle problems are solved more efficiently by using quantum algorithms; this naturally implies changing the computer to quantum, while the choice of the software program remains sharp. In order to highlight the non-mechanistic origin of this higher efficiency, also the uncertainty about which program is installed must be represented in a quantum way.
Grovers algorithm has achieved great success. But quantum search algorithms still are not complete algorithms because of Grovers Oracle. We concerned on this problem and present a new quantum search algorithm in adiabatic model without Oracle. We ana
We study a simple-harmonic-oscillator quantum computer solving oracle decision problems. We show that such computers can perform better by using nonorthogonal Gaussian wave functions rather than orthogonal top-hat wave functions as input to the infor
In the universal blind quantum computation problem, a client wants to make use of a single quantum server to evaluate $C|0rangle$ where $C$ is an arbitrary quantum circuit while keeping $C$ secret. The clients goal is to use as few resources as possi
The Kibble-Zurek mechanism (KZM) captures the key physics in the non-equilibrium dynamics of second-order phase transitions, and accurately predict the density of the topological defects formed in this process. However, despite much effort, the verac
Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously link