ﻻ يوجد ملخص باللغة العربية
By placing changeable nanofabricated structures (wires, dots, etc.) on an atom mirror one can design guiding and trapping potentials for atoms. These potentials are similar to the electrostatic potentials which trap and guide electrons in semiconductor quantum devices like quantum wires and quantum dots. This technique will allow the fabrication of nanoscale atom optical devices.
The manipulation of neutral atoms by light is at the heart of countless scientific discoveries in the field of quantum physics in the last three decades. The level of control that has been achieved at the single particle level within arrays of optica
Quantum information can be processed using large ensembles of ultracold and trapped neutral atoms, building naturally on the techniques developed for high-precision spectroscopy and metrology. This article reviews some of the most important protocols
The architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) for long-distance quantum communication with atomic ensembles is analyzed. Its fidelity and throughput in entanglement distribution, entanglement swapping, and quantum teleportation i
We study the nature of excitons bound to I1 basal plane stacking faults in ensembles of ultrathin GaN nanowires by continuous-wave and time-resolved photoluminescence spectroscopy. These ultrathin nanowires, obtained by the thermal decomposition of s
Entangled K0 anti-K0 pairs are shown to be suitable to discuss extensions and tests of Bohrs complementarity principle through the quantum marking and quantum erasure techniques suggested by M. O. Scully and K. Druehl [Phys. Rev. A 25, 2208 (1982)].