ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsed energy-time entangled twin-photon source for quantum communication

75   0   0.0 ( 0 )
 نشر من قبل Wolfgang Tittel
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A pulsed source of energy-time entangled photon pairs pumped by a standard laser diode is proposed and demonstrated. The basic states can be distinguished by their time of arrival. This greatly simplifies the realization of 2-photon quantum cryptography, Bell state analyzers, quantum teleportation, dense coding, entanglement swapping, GHZ-states sources, etc. Moreover the entanglement is well protected during photon propagation in telecom optical fibers, opening the door to few-photon applications of quantum communication over long distances.

قيم البحث

اقرأ أيضاً

We demonstrate pulsed polarization-entangled photons generated from a periodically poled $mathrm{KTiOPO_4}$ (PPKTP) crystal in a Sagnac interferometer configuration at telecom wavelength. Since the group-velocity-matching (GVM) condition is satisfied , the intrinsic spectral purity of the photons is much higher than in the previous scheme at around 800 nm wavelength. The combination of a Sagnac interferometer and the GVM-PPKTP crystal makes our entangled source compact, stable, highly entangled, spectrally pure and ultra-bright. The photons were detected by two superconducting nanowire single photon detectors (SNSPDs) with detection efficiencies of 70% and 68% at dark counts of less than 1 kcps. We achieved fidelities of 0.981 $pm$ 0.0002 for $left| {psi ^ -} rightrangle$ and 0.980 $pm$ 0.001 for $left| {psi ^ +} rightrangle$ respectively. This GVM-PPKTP-Sagnac scheme is directly applicable to quantum communication experiments at telecom wavelength, especially in free space.
Noise and imperfection of realistic devices are major obstacles for implementing quantum cryptography. In particular birefringence in optical fibers leads to decoherence of qubits encoded in polarization of photon. We show how to overcome this proble m by doing single qubit quantum communication without a shared spatial reference frame and precise timing. Quantum information will be encoded in pair of photons using ``tag operations which corresponds to the time delay of one of the polarization modes. This method is robust against the phase instability of the interferometers despite the use of time-bins. Moreover synchronized clocks are not required in the ideal situation no photon loss case as they are only necessary to label the different encoded qubits.
The generation of ultrafast laser pulses and the reconstruction of their electric fields is essential for many applications in modern optics. Quantum optical fields can also be generated on ultrafast time scales, however, the tools and methods availa ble for strong laser pulses are not appropriate for measuring the properties of weak, possibly entangled pulses. Here, we demonstrate a method to reconstruct the joint-spectral amplitude of a two-photon energy-time entangled state from joint measurements of the frequencies and arrival times of the photons, and the correlations between them. Our reconstruction method is based on a modified Gerchberg-Saxton algorithm. Such techniques are essential to measure and control the shape of ultrafast entangled photon pulses.
Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast timescales making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast timescales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.
A photon source based on postselection from entangled photon pairs produced by parametric frequency down-conversion is suggested. Its ability to provide good approximations of single-photon states is examined. Application of this source in quantum cr yptography for quantum key distribution is discussed. Advantages of the source compared to other currently used sources are clarified. Future prospects of the photon source are outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا