ﻻ يوجد ملخص باللغة العربية
Non dispersive electronic Rydberg wave packets may be created in atoms illuminated by a microwave field of circular polarization. We discuss the spontaneous emission from such states and show that the elastic incoherent component (occuring at the frequency of the driving field) dominates the spectrum in the semiclassical limit, contrary to earlier predictions. We calculate the frequencies of single photon emissions and the associated rates in the harmonic approximation, i.e. when the wave packet has approximately a Gaussian shape. The results agree well with exact quantum mechanical calculations, which validates the analytical approach.
Space-time wave packets can propagate invariantly in free space with arbitrary group velocity thanks to the spatio-temporal correlation. Here it is proved that the space-time wave packets are stable in dispersive media as well and free from the sprea
We consider multiple collisions of quantum wave packets in one dimension. The system under investigation consists of an impenetrable wall and of two hard-core particles with very different masses. The lighter particle bounces between the heavier one
We demonstrate control over the localization of high-lying Rydberg wave packets in argon atoms with phase-locked orthogonally polarized two-color (OTC) laser fields. With a reaction microscope, we measured ionization signals of high-lying Rydberg sta
The classical and quantum representations of thermal equilibrium are strikingly different, even for free, non-interacting particles. While the first involves particles with well-defined positions and momenta, the second usually involves energy eigens
The problems of cavity atom optics in the presence of an external strong coherent field are formulated as the problems of potential scattering of doubly-dressed atomic wave packets. Two types of potentials produced by various multiphoton Raman proces