ﻻ يوجد ملخص باللغة العربية
The classical and quantum representations of thermal equilibrium are strikingly different, even for free, non-interacting particles. While the first involves particles with well-defined positions and momenta, the second usually involves energy eigenstates that are delocalized over a confining volume. In this paper, we derive convex decompositions of the density operator for non-interacting, non-relativistic particles in thermal equilibrium that allow for a connection between these two descriptions. Associated with each element of the decomposition of the N-particle thermal state is an N-body wave function, described as a set of wave packets; the distribution of the average positions and momenta of the wave packets can be linked to the classical description of thermal equilibrium, while the different amplitudes in the wave function capture the statistics relevant for fermions or bosons.
The problems of cavity atom optics in the presence of an external strong coherent field are formulated as the problems of potential scattering of doubly-dressed atomic wave packets. Two types of potentials produced by various multiphoton Raman proces
The interaction between matter and squeezed light has mostly been treated within the approximation that the field correlation time is small. Methods for treating squeezed light with more general correlations currently involve explicitly modeling the
We analyse a little known aspect of the Klein paradox. A Klein-Gordon boson appears to be able to cross a supercritical rectangular barrier without being reflected, while spending there a negative amount of time. The transmission mechanism is demonst
Non dispersive electronic Rydberg wave packets may be created in atoms illuminated by a microwave field of circular polarization. We discuss the spontaneous emission from such states and show that the elastic incoherent component (occuring at the fre
We demonstrate the possibility of realizing sub-Planck-scale structures in the mesoscopic superposition of molecular wave packets involving vibrational levels. The time evolution of the wave packet, taken here as the SU(2) coherent state of the Morse