ترغب بنشر مسار تعليمي؟ اضغط هنا

Barut-Girardello coherent states for sp(N,C) and multimode Schrodinger cat states

149   0   0.0 ( 0 )
 نشر من قبل D. Trifonov
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D.A. Trifonov




اسأل ChatGPT حول البحث

Overcomplete families of states of the type of Barut-Girardello coherent states (BG CS) are constructed for noncompact algebras $u(p,q)$ and $sp(N,C)$ in quadratic bosonic representation. The $sp(N,C)$ BG CS are obtained in the form of multimode ordinary Schrodinger cat states. A set of such macroscopic superpositions is pointed out which is overcomplete in the whole $N$ mode Hilbert space (while the associated $sp(N,C)$ representation is reducible). The multimode squared amplitude Schrodinger cat states are introduced as macroscopic superpositions of the obtained $sp(N,C)$ BG CS.}

قيم البحث

اقرأ أيضاً

The simple resonant Rabi oscillation of a two-level system in a single-mode coherent field reveals complex features at the mesoscopic scale, with oscillation collapses and revivals. Using slow circular Rydberg atoms interacting with a superconducting microwave cavity, we explore this phenomenon in an unprecedented range of interaction times and photon numbers. We demonstrate the efficient production of `cat states, quantum superposition of coherent components with nearly opposite phases and sizes in the range of few tens of photons. We measure cuts of their Wigner functions revealing their quantum coherence and observe their fast decoherence. This experiment opens promising perspectives for the rapid generation and manipulation of non-classical states in cavity and circuit Quantum Electrodynamics.
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information process ing protocols, such as, quantum teleportation. We discuss the teleportation of non-Gaussian, non-classical Schrodinger-cat states of light using two-mode squeezed vacuum light that is made non-Gaussian via subtraction of a photon from each of the two modes. We consider the experimentally realizable cat states produced by subtracting a photon from the single-mode squeezed vacuum state. We discuss two figures of merit for the teleportation process, a) the fidelity, and b) the maximum negativity of the Wigner function at the output. We elucidate how the non-Gaussian entangled resource lowers the requirements on the amount of squeezing necessary to achieve any given fidelity of teleportation, or to achieve negative values of the Wigner function at the output.
We demonstrate that superpositions of coherent and displaced Fock states, also referred to as generalized Schrodinger cats cats, can be created by application of a nonlinear displacement operator which is a deformed version of the Glauber displacemen t operator. Consequently, such generalized cat states can be formally considered as nonlinear coherent states. We then show that Glauber-Fock photonic lattices endowed with alternating positive and negative coupling coefficients give rise to classical analogs of such cat states. In addition, it is pointed out that the analytic propagator of these deformed Glauber-Fock arrays explicitly contains the Wigner operator opening the possibility to observe Wigner functions of the quantum harmonic oscillator in the classical domain.
301 - P. Adam , T. Kiss , Z. Darazs 2015
Given a source of two coherent state superpositions with small separation in a traveling wave optical setting, we show that by interference and balanced homodyne measurement it is possible to conditionally prepare a symmetrically placed superposition of coherent states around the origo of the phase space. The separation of the coherent states in the superposition will be amplified during the process.
We propose a postselecting parity-swap amplifier for Schrodinger cat states that does not require the amplified state to be known a priori. The device is based on a previously-implemented state comparison amplifier for coherent states. It consumes on ly Gaussian resource states, which provides an advantage over some cat state amplifiers. It requires simple Geiger-mode photodetectors and works with high fidelity and approximately twofold gain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا