ترغب بنشر مسار تعليمي؟ اضغط هنا

Photovoltaic Probe of Cavity Polaritons in a Quantum Cascade Structure

48   0   0.0 ( 0 )
 نشر من قبل Luca Sapienza
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Luca Sapienza




اسأل ChatGPT حول البحث

The strong coupling between an intersubband excitation in a quantum cascade structure and a photonic mode of a planar microcavity has been detected by angle-resolved photovoltaic measurements. A typical anticrossing behavior, with a vacuum-field Rabi splitting of 16 meV at 78K, has been measured, for an intersubband transition at 163 meV. These results show that the strong coupling regime between photons and intersubband excitations can be engineered in a quantum cascade opto-electronic device. They also demonstrate the possibility to perform angle-resolved mid-infrared photodetection and to develop active devices based on intersubband cavity polaritons.


قيم البحث

اقرأ أيضاً

We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors are emerged as sha rp frequency switchings of the cavity magnon-polaritons (CMPs) and related to the transition between states with large and small number of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.
169 - Yu-Li Dong , Shi-Qun Zhu , 2012
The dynamical behavior of a coupled cavity array is investigated when each cavity contains a three-level atom. For the uniform and staggered intercavity hopping, the whole system Hamiltonian can be analytically diagonalized in the subspace of single- atom excitation. The quantum state transfer along the cavities is analyzed in detail for distinct regimes of parameters, and some interesting phenomena including binary transmission, selective localization of the excitation population are revealed. We demonstrate that the uniform coupling is more suitable for the quantum state transfer. It is shown that the initial state of polariton located in the first cavity is crucial to the transmission fidelity, and the local entanglement depresses the state transfer probability. Exploiting the metastable state, the distance of the quantum state transfer can be much longer than that of Jaynes-Cummings-Hubbard model. A higher transmission probability and longer distance can be achieved by employing a class of initial encodings and final decodings.
Magnon-polaritons are hybrid light-matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both pho tons and magnons, the polaritons have limited lifetimes. However, stationary magnon-polariton states can be reached by a dynamical balance between pumping and losses, so the intrinsical nonequilibrium system may be described by a non-Hermitian Hamiltonian. Here we design a tunable cavity quantum electrodynamics system with a small ferromagnetic sphere in a microwave cavity and engineer the dissipations of photons and magnons to create cavity magnon-polaritons which have non-Hermitian spectral degeneracies. By tuning the magnon-photon coupling strength, we observe the polaritonic coherent perfect absorption and demonstrate the phase transition at the exceptional point. Our experiment offers a novel macroscopic quantum platform to explore the non-Hermitian physics of the cavity magnon-polaritons.
Resonant excitation of atoms and ions in macroscopic cavities has lead to exceptional control over quanta of light. Translating these advantages into the solid state with emitters in microcavities promises revolutionary quantum technologies in inform ation processing and metrology. Key is resonant optical reading and writing from the emitter-cavity system. However, it has been widely expected that the reflection of a resonant laser from a micro-fabricated wavelength-sized cavity would dominate any quantum signal. Here we demonstrate coherent photon scattering from a quantum dot in a micro-pillar. The cavity is shown to enhance the fraction of light which is resonantly scattered towards unity, generating anti-bunched indistinguishable photons a factor of 16 beyond the time-bandwidth limit, even when the transition is near saturation. Finally, deterministic excitation is used to create 2-photon N00N states with which we make super-resolving phase measurements in a photonic circuit.
The increasing level of experimental control over atomic and optical systems gained in the past years have paved the way for the exploration of new physical regimes in quantum optics and atomic physics, characterised by the appearance of quantum many -body phenomena, originally encountered only in condensed-matter physics, and the possibility of experimentally accessing them in a more controlled manner. In this review article we survey recent theoretical studies concerning the use of cavity quantum electrodynamics to create quantum many-body systems. Based on recent experimental progress in the fabrication of arrays of interacting micro-cavities and on their coupling to atomic-like structures in several different physical architectures, we review proposals on the realisation of paradigmatic many-body models in such systems, such as the Bose-Hubbard and the anisotropic Heisenberg models. Such arrays of coupled cavities offer interesting properties as simulators of quantum many-body physics, including the full addressability of individual sites and the accessibility of inhomogeneous models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا