ﻻ يوجد ملخص باللغة العربية
The dynamical behavior of a coupled cavity array is investigated when each cavity contains a three-level atom. For the uniform and staggered intercavity hopping, the whole system Hamiltonian can be analytically diagonalized in the subspace of single-atom excitation. The quantum state transfer along the cavities is analyzed in detail for distinct regimes of parameters, and some interesting phenomena including binary transmission, selective localization of the excitation population are revealed. We demonstrate that the uniform coupling is more suitable for the quantum state transfer. It is shown that the initial state of polariton located in the first cavity is crucial to the transmission fidelity, and the local entanglement depresses the state transfer probability. Exploiting the metastable state, the distance of the quantum state transfer can be much longer than that of Jaynes-Cummings-Hubbard model. A higher transmission probability and longer distance can be achieved by employing a class of initial encodings and final decodings.
Single atoms absorb and emit light from a resonant laser beam photon by photon. We show that a single atom strongly coupled to an optical cavity can absorb and emit resonant photons in pairs. The effect is observed in a photon correlation experiment
We report a system where fixed interactions between non-computational levels make bright the otherwise forbidden two-photon 00 --> 11 transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconduc
We propose a feasible scheme to realize a spin network via a coupled cavity array with the appropriate arrangement of external multi-driving lasers. It is demonstrated that the linear photon-like dispersion is achievable and this property opens up th
We propose methods for realization of continuous two photon source using coherently pumped quantum dot embedded inside a photonic crystal cavity. We analyze steady state population in quantum dot energy levels and field inside the cavity mode. We fin
We propose a probabilistic scheme to prepare a maximally entangled state between a pair of two-level atoms inside a leaking cavity, without requiring precise time-controlling of the system evolution and initial atomic state. We show that the steady s