ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum information processing via a lossy bus

167   0   0.0 ( 0 )
 نشر من قبل Sean Barrett
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a method to perform two qubit measurements and logic operations on pairs of qubits which each interact with a harmonic oscillator degree of freedom (the emph{bus}), but do not directly interact with one another. Our scheme uses only weak interactions between the qubit and the bus, homodyne measurements, and single qubit operations. In contrast to earlier schemes, the technique presented here is extremely robust to photon loss in the bus mode, and can function with high fidelity even when the rate of photon loss is comparable to the strength of the qubit-bus coupling.

قيم البحث

اقرأ أيضاً

Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of ch oice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.
97 - John H. Reina , 1999
We show how optically-driven coupled quantum dots can be used to prepare maximally entangled Bell and Greenberger-Horne-Zeilinger states. Manipulation of the strength and duration of the selective light-pulses needed for producing these highly entang led states provides us with crucial elements for the processing of solid-state based quantum information. Theoretical predictions suggest that several hundred single quantum bit rotations and Controlled-Not gates could be performed before decoherence of the excitonic states takes place.
Photons have been a flagship system for studying quantum mechanics, advancing quantum information science, and developing quantum technologies. Quantum entanglement, teleportation, quantum key distribution and early quantum computing demonstrations w ere pioneered in this technology because photons represent a naturally mobile and low-noise system with quantum-limited detection readily available. The quantum states of individual photons can be manipulated with very high precision using interferometry, an experimental staple that has been under continuous development since the 19th century. The complexity of photonic quantum computing device and protocol realizations has raced ahead as both underlying technologies and theoretical schemes have continued to develop. Today, photonic quantum computing represents an exciting path to medium- and large-scale processing. It promises to out aside its reputation for requiring excessive resource overheads due to inefficient two-qubit gates. Instead, the ability to generate large numbers of photons---and the development of integrated platforms, improved sources and detectors, novel noise-tolerant theoretical approaches, and more---have solidified it as a leading contender for both quantum information processing and quantum networking. Our concise review provides a flyover of some key aspects of the field, with a focus on experiment. Apart from being a short and accessible introduction, its many references to in-depth articles and longer specialist reviews serve as a launching point for deeper study of the field.
As a result of the capabilities of quantum information, the science of quantum information processing is now a prospering, interdisciplinary field focused on better understanding the possibilities and limitations of the underlying theory, on developi ng new applications of quantum information and on physically realizing controllable quantum devices. The purpose of this primer is to provide an elementary introduction to quantum information processing, and then to briefly explain how we hope to exploit the advantages of quantum information. These two sections can be read independently. For reference, we have included a glossary of the main terms of quantum information.
104 - F. Jelezko , J. Wrachtrup 2005
Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during last decade. Among other systems, like ions in traps or superconducting circuits, solid-states based qubits are cons idered to be promising candidates for first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defect in diamond. Qubits are defined as single spin states (electron or nuclear). This allows exploring long coherence time (up to seconds for nuclear spins at cryogenic temperatures). In addition, the optical transition between ground and excited electronic states allows coupling of spin degrees of freedom to the state of the electromagnetic field. Such coupling gives access to the spin state readout via spin-selective scattering of photon. This also allows using of spin state as robust memory for flying qubits (photons).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا