ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum entanglement and information processing via excitons in optically-driven quantum dots

98   0   0.0 ( 0 )
 نشر من قبل John Henry Reina
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John H. Reina -




اسأل ChatGPT حول البحث

We show how optically-driven coupled quantum dots can be used to prepare maximally entangled Bell and Greenberger-Horne-Zeilinger states. Manipulation of the strength and duration of the selective light-pulses needed for producing these highly entangled states provides us with crucial elements for the processing of solid-state based quantum information. Theoretical predictions suggest that several hundred single quantum bit rotations and Controlled-Not gates could be performed before decoherence of the excitonic states takes place.



قيم البحث

اقرأ أيضاً

Spin-bearing molecules are promising building blocks for quantum technologies as they can be chemically tuned, assembled into scalable arrays, and readily incorporated into diverse device architectures. In molecular systems, optically addressing grou nd-state spins would enable a wide range of applications in quantum information science, as has been demonstrated for solid-state defects. However, this important functionality has remained elusive for molecules. Here, we demonstrate such optical addressability in a series of synthesized organometallic, chromium(IV) molecules. These compounds display a ground-state spin that can be initialized and read out using light, and coherently manipulated with microwaves. In addition, through atomistic modification of the molecular structure, we tune the spin and optical properties of these compounds, paving the way for designer quantum systems synthesized from the bottom-up.
131 - John H. Reina 2000
A major question for condensed matter physics is whether a solid-state quantum computer can ever be built. Here we discuss two different schemes for quantum information processing using semiconductor nanostructures. First, we show how optically drive n coupled quantum dots can be used to prepare maximally entangled Bell and Greenberger-Horne-Zeilinger states by varying the strength and duration of selective light pulses. The setup allows us to perform an all-optical generation of the quantum teleportation of an excitonic state in an array of coupled quantum dots. Second, we give a proposal for reliable implementation of quantum logic gates and long decoherence times in a quantum dots system based on nuclear magnetic resonance (NMR), where the nuclear resonance is controlled by the ground state transitions of few-electron QDs in an external magnetic field. The dynamical evolution of these systems in the presence of environmentally-induced decoherence effects is also discussed.
In this paper we investigate an implementation of a quantum gate for quantum information processing in a system of quantum dots in an optical cavity manipulated by collinear laser fields. For simplicity we give theoretical and numerical results only for simulations of two quantum dots in a cavity interacting with two collinear fields. Extension to the system of many quantum dots in a cavity can be done in similar manner as the two dots system. It is shown that due to the collinear fields are used, a two qubit gate operation can be acheived by choosing properly detunings and amplitudes of the collinear fields.
The electronic spin degrees of freedom in semiconductors typically have decoherence times that are several orders of magnitude longer than other relevant timescales. A solid-state quantum computer based on localized electron spins as qubits is theref ore of potential interest. Here, a scheme that realizes controlled interactions between two distant quantum dot spins is proposed. The effective long-range interaction is mediated by the vacuum field of a high finesse microcavity. By using conduction-band-hole Raman transitions induced by classical laser fields and the cavity-mode, parallel controlled-not operations and arbitrary single qubit rotations can be realized. Optical techniques can also be used to measure the spin-state of each quantum dot.
We propose an electromechanical scheme where the electronic degrees of freedom of boron vacancy color centers hosted by a hexagonal boron nitride nanoribbon are coupled for quantum information processing. The mutual coupling of color centers is provi ded via their coupling to the mechanical motion of the ribbon, which in turn stems from the local strain. The coupling strengths are computed by performing ab-initio calculations. The density functional theory (DFT) results for boron vacancy centers on boron nitride monolayers reveal a huge strain susceptibility. In our analysis, we take into account the effect of all flexural modes and show that despite the thermal noise introduced through the vibrations one can achieve steady-state entanglement between two and more number of qubits that survives even at room temperature. Moreover, the entanglement is robust against mis-positioning of the color centers. The effective coupling of color centers is engineered by positioning them in the proper positions. Hence, one is able to tailor stationary graph states. Furthermore, we study the quantum simulation of the Dicke-Ising model and show that the phonon superradiance phase transition occurs even for a finite number of color centers. Given the steady-state nature of the proposed scheme and accessibility of the electronic states through optical fields, our work paves the way for the realization of steady-state quantum information processing with color centers in hexagonal boron nitride membranes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا