ﻻ يوجد ملخص باللغة العربية
Coherent population trapping is demonstrated in single nitrogen-vacancy centers in diamond under optical excitation. For sufficient excitation power, the fluorescence intensity drops almost to the background level when the laser modulation frequency matches the 2.88 GHz splitting of the ground states. The results are well described theoretically by a four-level model, allowing the relative transition strengths to be determined for individual centers. The results show that all-optical control of single spins is possible in diamond.
The silicon-vacancy ($mathrm{SiV}^-$) color center in diamond has attracted attention due to its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrati
The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electro
Spatial and temporal evolution is studied of two powerful short laser pulses having different wavelengths and interacting with a dense three-level Lambda-type optical medium under coherent population trapping. A general case of unequal oscillator str
A solid-state system combining a stable spin degree of freedom with an efficient optical interface is highly desirable as an element for integrated quantum optical and quantum information systems. We demonstrate a bright color center in diamond with
Pulsed excitation of broad spectra requires very high field strengths if monochromatic pulses are used. If the corresponding high power is not available or not desirable, the pulses can be replaced by suitable low-power pulses that distribute the pow