ترغب بنشر مسار تعليمي؟ اضغط هنا

All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond

181   0   0.0 ( 0 )
 نشر من قبل Lachlan Rogers
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The silicon-vacancy ($mathrm{SiV}^-$) color center in diamond has attracted attention due to its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show high fidelity optical initialization and readout of electronic spin in a single $mathrm{SiV}^-$ center with a spin relaxation time of $T_1=2.4pm0.2$ ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of $T_2^star=35pm3$ ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherences by engineering interactions with phonons. These results establish the $mathrm{SiV}^-$ center as a solid-state spin-photon interface.



قيم البحث

اقرأ أيضاً

Coherent population trapping is demonstrated in single nitrogen-vacancy centers in diamond under optical excitation. For sufficient excitation power, the fluorescence intensity drops almost to the background level when the laser modulation frequency matches the 2.88 GHz splitting of the ground states. The results are well described theoretically by a four-level model, allowing the relative transition strengths to be determined for individual centers. The results show that all-optical control of single spins is possible in diamond.
The silicon-vacancy center in diamond offers attractive opportunities in quantum photonics due to its favorable optical properties and optically addressable electronic spin. Here, we combine both to achieve all-optical coherent control of its spin st ates. We utilize this method to explore spin dephasing effects in an impurity-rich sample beyond the limit of phonon-induced decoherence: Employing Ramsey and Hahn-echo techniques at 12mK base temperature we identify resonant coupling to a substitutional nitrogen spin bath as the limiting decoherence source for the electron spin.
A solid-state system combining a stable spin degree of freedom with an efficient optical interface is highly desirable as an element for integrated quantum optical and quantum information systems. We demonstrate a bright color center in diamond with excellent optical properties and controllable electronic spin states. Specifically, we carry out detailed optical spectroscopy of a Germanium Vacancy (GeV) color center demonstrating optical spectral stability. Using an external magnetic field to lift the electronic spin degeneracy, we explore the spin degree of freedom as a controllable qubit. Spin polarization is achieved using optical pumping, and a spin relaxation time in excess of 20 $mu$s is demonstrated. Optically detected magnetic resonance (ODMR) is observed in the presence of a resonant microwave field. ODMR is used as a probe to measure the Autler-Townes effect in a microwave-optical double resonance experiment. Superposition spin states were prepared using coherent population trapping, and a pure dephasing time of about 19 ns was observed. Prospects for realizing coherent quantum registers based on optically controlled GeV centers are discussed.
We investigate phonon induced electronic dynamics in the ground and excited states of the negatively charged silicon-vacancy ($mathrm{SiV}^-$) centre in diamond. Optical transition line widths, transition wavelength and excited state lifetimes are me asured for the temperature range 4-350 K. The ground state orbital relaxation rates are measured using time-resolved fluorescence techniques. A microscopic model of the thermal broadening in the excited and ground states of the $mathrm{SiV}^-$ centre is developed. A vibronic process involving single-phonon transitions is found to determine orbital relaxation rates for both the ground and the excited states at cryogenic temperatures. We discuss the implications of our findings for coherence of qubit states in the ground states and propose methods to extend coherence times of $mathrm{SiV}^-$ qubits.
We demonstrate that silicon-vacancy (SiV) centers in diamond can be used to efficiently generate coherent optical photons with excellent spectral properties. We show that these features are due to the inversion symmetry associated with SiV centers, a nd demonstrate generation of indistinguishable single photons from separate emitters in a Hong-Ou-Mandel (HOM) interference experiment.Prospects for realizing efficient quantum network nodes using SiV centers are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا