ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Perfect Simultaneous Measurement of a Qubit Register

199   0   0.0 ( 0 )
 نشر من قبل Mark Acton
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simultaneous measurement of multiple qubits stored in hyperfine levels of trapped 111Cd+ ions is realized with an intensified charge-coupled device (CCD) imager. A general theory of fluorescence detection for hyperfine qubits is presented and applied to experimental data. The use of an imager for photon detection allows for multiple qubit state measurement with detection fidelities of greater than 98%. Improvements in readout speed and fidelity are discussed in the context of scalable quantum computation architectures.

قيم البحث

اقرأ أيضاً

Qubit state detection is an important part of a quantum computation. As number of qubits in a quantum register increases, it is necessary to maintain high fidelity detection to accurately measure the multi-qubit state. Here we present experimental de monstration of high-fidelity detection of a multi-qubit trapped ion register with average single qubit detection error of 4.2(1.5) ppm and a 4-qubit state detection error of 17(2) ppm, limited by the decay lifetime of the qubit, using a novel single-photon-sensitive camera with fast data collection, excellent temporal and spatial resolution, and low instrumental crosstalk.
Solid-state nuclear spins surrounding individual, optically addressable qubits provide a crucial resource for quantum networks, computation and simulation. While hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence, developing coherent quantum systems in nuclear spin-rich hosts enables exploration of a much broader range of materials for quantum information applications. The collective modes of these dense nuclear spin ensembles provide a natural basis for quantum storage, however, utilizing them as a resource for single spin qubits has thus far remained elusive. Here, by using a highly coherent, optically addressed 171Yb3+ qubit doped into a nuclear spin-rich yttrium orthovanadate crystal, we develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51V5+ lattice ions. Via a dynamically-engineered spin exchange interaction, we polarise this nuclear spin ensemble, generate collective spin excitations, and subsequently use them to implement a long-lived quantum memory. We additionally demonstrate preparation and measurement of maximally entangled 171Yb--51V Bell states. Unlike conventional, disordered nuclear spin based quantum memories, our platform is deterministic and reproducible, ensuring identical quantum registers for all 171Yb qubits. Our approach provides a framework for utilising the complex structure of dense nuclear spin baths, paving the way for building large-scale quantum networks using single rare-earth ion qubits.
We study the protective measurement of a qubit by a second qubit acting as a probe. Consideration of this model is motivated by the possibility of its experimental implementation in multiqubit systems such as trapped ions. In our scheme, information about the expectation value of an arbitrary observable of the system qubit is encoded in the rotation of the state of the probe qubit. We describe the structure of the Hamiltonian that gives rise to this measurement and analyze the resulting dynamics under a variety of realistic conditions, such as noninfinitesimal measurement strengths, repeated measurements, non-negligible intrinsic dynamics of the probe, and interactions of the system and probe qubits with an environment. We propose an experimental realization of our model in an ion trap. The experiment may be performed with existing technology and makes use of established experimental methods for the engineering and control of Hamiltonians for quantum gates and quantum simulations of spin systems.
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity. This severely restricts what quantum algorithms can be compiled and implemented on such devices. One w ay to overcome these limitations is to expand the available gate set from single- and two-qubit gates to multi-qubit gates, which entangle three or more qubits in a single step. Here, we show that such multi-qubit gates can be realized by the simultaneous application of multiple two-qubit gates to a group of qubits where at least one qubit is involved in two or more of the two-qubit gates. Multi-qubit gates implemented in this way are as fast as, or sometimes even faster than, the constituent two-qubit gates. Furthermore, these multi-qubit gates do not require any modification of the quantum processor, but are ready to be used in current quantum-computing platforms. We demonstrate this idea for two specific cases: simultaneous controlled-Z gates and simultaneous iSWAP gates. We show how the resulting multi-qubit gates relate to other well-known multi-qubit gates and demonstrate through numerical simulations that they would work well in available quantum hardware, reaching gate fidelities well above 99 %. We also present schemes for using these simultaneous two-qubit gates to swiftly create large entangled states like Dicke and Greenberg-Horne-Zeilinger states.
Spins associated to single defects in solids provide promising qubits for quantum information processing and quantum networks. Recent experiments have demonstrated long coherence times, high-fidelity operations and long-range entanglement. However, c ontrol has so far been limited to a few qubits, with entangled states of three spins demonstrated. Realizing larger multi-qubit registers is challenging due to the need for quantum gates that avoid crosstalk and protect the coherence of the complete register. In this paper, we present novel decoherence-protected gates that combine dynamical decoupling of an electron spin with selective phase-controlled driving of nuclear spins. We use these gates to realize a 10-qubit quantum register consisting of the electron spin of a nitrogen-vacancy center and 9 nuclear spins in diamond. We show that the register is fully connected by generating entanglement between all 45 possible qubit pairs, and realize genuine multipartite entangled states with up to 7 qubits. Finally, we investigate the register as a multi-qubit memory. We show coherence times up to 63(2) seconds - the longest reported for a single solid-state qubit - and demonstrate that two-qubit entangled states can be stored for over 10 seconds. Our results enable the control of large quantum registers with long coherence times and therefore open the door to advanced quantum algorithms and quantum networks with solid-state spin qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا