ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of mixed-state quantum systems by a train of short pulses

55   0   0.0 ( 0 )
 نشر من قبل David Daems
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A density matrix approach is developped for the control of a mixed-state quantum system using a time-dependent external field such as a train of pulses. This leads to the definition of a target density matrix constructed in a reduced Hilbert space as a specific combination of the eigenvectors of a given observable through weighting factors related with the initial statistics of the system. A train of pulses is considered as a possible strategy to reach this target. An illustration is given by considering the laser control of molecular alignment / orientation in thermal equilibrium.

قيم البحث

اقرأ أيضاً

Trains of ultrashort laser pulses separated by the time of rotational revival (typically, tens of picoseconds) have been exploited for creating ensembles of aligned molecules. In this work we introduce a chiral pulse train - a sequence of linearly po larized pulses with the polarization direction rotating from pulse to pulse by a controllable angle. The chirality of such a train, expressed through the period and direction of its polarization rotation, is used as a new control parameter for achieving selectivity and directionality of laser-induced rotational excitation. The method employs chiral trains with a large number of pulses separated on the time scale much shorter than the rotational revival (a few hundred femtosecond), enabling the use of conventional pulse shapers.
Ultrafast processes in matter can be captured and even controlled by using sequences of few-cycle optical pulses, which need to be well characterized, both in amplitude and phase. The same degree of control has not yet been achieved for few-cycle ext reme ultraviolet pulses generated by high-order harmonic generation in gases, with duration in the attosecond range. Here, we show that by varying the spectral phase and carrier-envelope phase (CEP) of a high-repetition rate laser, using dispersion in glass, we achieve a high degree of control of the relative phase and CEP between consecutive attosecond pulses. The experimental results are supported by a detailed theoretical analysis based upon the semiclassical three-step model for high-order harmonic generation.
We present a systematic approach based on Bloch vectors treatment and the Magnus quantum electrodynamical formalism to study qubit manipulation by a train of pulses. These investigations include one of the basic processes involved in quantum computat ion. The concrete calculations are performed for tunneling quantum dynamics, multiple resonance and off-resonance excitations of qubit driven by Gaussian pulses. In this way, the populations of qubit states due to multiple resonant interactions are investigated for various operational regimes including: single-pulse excitation, two-pulse excitation with phase shift between pulse envelopes being controlling parameter and for excitation with sequential pulses. In the last case, we demonstrate the formation of quasienergetic states and quasienergies of qubit driven by train of identical pulses. In this case the transition probability of qubit exhibits aperiodic oscillations, but also becomes periodically regular for definite values of the quasienergy.
Single photons are the natural link between the nodes of a quantum network: they coherently propagate and interact with many types of quantum bits including natural and artificial atoms. Ideally, one atom should deterministically control the state of a photon and vice-versa. The interaction between free space photons and an atom is however intrinsically weak and many efforts have been dedicated to develop an efficient interface. Recently, it was shown that the propagation of light can be controlled by an atomic resonance coupled to a cavity or a single mode waveguide. Here we demonstrate that the state of a single artificial atom in a cavity can be efficiently controlled by a few-photon pulse. We study a quantum dot optimally coupled to an electrically-controlled cavity device, acting as a near optimal one-dimensional atom. By monitoring the exciton population through resonant fluorescence, we demonstrate Rabi oscillations with a $pi$-pulse of only 3.8 photons on average. The probability to flip the exciton quantum bit with a single photon Fock state is calculated to reach 55% in the same device.
Quantum systems can be controlled by other quantum systems in a reversible way, without any information leaking to the outside of the system-controller compound. Such coherent quantum control is deterministic, is less noisy than measurement-based fee dback control, and has potential applications in a variety of quantum technologies, including quantum computation, quantum communication and quantum metrology. Here we introduce a coherent feedback protocol, consisting of a sequence of identical interactions with controlling quantum systems, that steers a quantum system from an arbitrary initial state towards a target state. We determine the broad class of such coherent feedback channels that achieve convergence to the target state, and then stabilise as well as protect it against noise. Our results imply that also weak system-controller interactions can counter noise if they occur with suitably high frequency. We provide an example of a control scheme that does not require knowledge of the target state encoded in the controllers, which could be the result of a quantum computation. It thus provides a mechanism for autonomous, purely quantum closed-loop control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا