ﻻ يوجد ملخص باللغة العربية
We show how the separability problem is dual to that of decomposing any given matrix into a conic combination of rank-one partial isometries, thus offering a duality approach different to the positive maps characterization problem. Several inmediate consequences are analyzed: (i) a sufficient criterion for separability for bipartite quantum systems, (ii) a complete solution to the separability problem for pure states also of bipartite systems independent of the classical Schmidt decomposition method and (iii) a natural generalization of these results to multipartite systems.
We present a review of the problem of finding out whether a quantum state of two or more parties is entangled or separable. After a formal definition of entangled states, we present a few criteria for identifying entangled states and introduce some e
Exploiting the cone structure of the set of unnormalized mixed quantum states, we offer an approach to detect separability independently of the dimensions of the subsystems. We show that any mixed quantum state can be decomposed as $rho=(1-lambda)C_{
We present a quasipolynomial-time algorithm for solving the weak membership problem for the convex set of separable, i.e. non-entangled, bipartite density matrices. The algorithm decides whether a density matrix is separable or whether it is eps-away
We study the separability problem in mixtures of Dicke states i.e., the separability of the so-called Diagonal Symmetric (DS) states. First, we show that separability in the case of DS in $C^dotimes C^d$ (symmetric qudits) can be reformulated as a qu
The problem of quantum state discrimination between two wave functions of a particle in a square well potential is considered. The optimal minimum-error probability for the state discrimination is known to be given by the Helstrom bound. A new strate