ﻻ يوجد ملخص باللغة العربية
We study the separability problem in mixtures of Dicke states i.e., the separability of the so-called Diagonal Symmetric (DS) states. First, we show that separability in the case of DS in $C^dotimes C^d$ (symmetric qudits) can be reformulated as a quadratic conic optimization problem. This connection allows us to exchange concepts and ideas between quantum information and this field of mathematics. For instance, copositive matrices can be understood as indecomposable entanglement witnesses for DS states. As a consequence, we show that positivity of the partial transposition (PPT) is sufficient and necessary for separability of DS states for $d leq 4$. Furthermore, for $d geq 5$, we provide analytic examples of PPT-entangled states. Second, we develop new sufficient separability conditions beyond the PPT criterion for bipartite DS states. Finally, we focus on $N$-partite DS qubits, where PPT is known to be necessary and sufficient for separability. In this case, we present a family of almost DS states that are PPT with respect to each partition but nevertheless entangled.
A decomposition form is introduced in this report to establish a criterion for the bi-partite separability of Bell diagonal states. A such criterion takes a quadratic form of the coefficients of a given Bell diagonal states and can be derived via a s
Separability criteria are typically of the necessary, but not sufficient, variety, in that satisfying some separability criterion, such as positivity of eigenvalues under partial transpose, does not strictly imply separability. Certifying separabilit
The structural study of entanglement in multipartite systems is hindered by the lack of necessary and sufficient operational criteria able to discriminate among the various entanglement properties of a given mixed state. Here, we pursue a different r
We analyze entanglement and nonlocal properties of the convex set of symmetric $N$-qubits states which are diagonal in the Dicke basis. First, we demonstrate that within this set, positivity of partial transposition (PPT) is necessary and sufficient
We present a review of the problem of finding out whether a quantum state of two or more parties is entangled or separable. After a formal definition of entangled states, we present a few criteria for identifying entangled states and introduce some e