ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas

145   0   0.0 ( 0 )
 نشر من قبل Chih-Sung Chuu
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the direct observation of sub-Poissonian number fluctuation for a degenerate Bose gas confined in an optical trap. Reduction of number fluctuations below the Poissonian limit is observed for average numbers that range from 300 to 60 atoms.

قيم البحث

اقرأ أيضاً

We study the phenomena at the overlap of quantum chaos and nonclassical statistics for the time-dependent model of nonlinear oscillator. It is shown in the framework of Mandel Q-parameter and Wigner function that the statistics of oscillatory excitat ion number is drastically changed in order-to chaos transition. The essential improvement of sub-Poissonian statistics in comparison with an analogous one for the standard model of driven anharmonic oscillator is observed for the regular operational regime. It is shown that in the chaotic regime the system exhibits the range of sub- and super-Poissonian statistics which alternate one to other depending on time intervals. Unusual dependence of the variance of oscillatory number on the external noise level for the chaotic dynamics is observed.
Sub-Poisson field with much reduced fluctuations in a cavity can boost quantum precision measurements via cavity-enhanced light-matter interactions. Strong coupling between an atom and a cavity mode has been utilized to generate highly sub-Poisson fi elds. However, a macroscopic number of optical intracavity photons with more than 3dB variance reduction in a setting of laser has not been possible. Here, we report sub-Poisson field lasing in a microlaser operating with hundreds of atoms with well-regulated atom-cavity coupling and interaction time. Its photon-number variance was 4dB below the standard quantum limit while the intracavity mean photon number scalable up to 600. The highly sub-Poisson photon statistics were not deteriorated by simultaneous interaction of a large number of atoms. Our finding suggests an effective pathway to widely scalable quasi-Fock-state lasing at the macroscopic scale.
Understanding the rich behavior that emerges from systems of interacting quantum particles, such as electrons in materials, nucleons in nuclei or neutron stars, the quark-gluon plasma, and superfluid liquid helium, requires investigation of systems t hat are clean, accessible, and have tunable parameters. Ultracold quantum gases offer tremendous promise for this application largely due to an unprecedented control over interactions. Specifically, $a$, the two-body scattering length that characterizes the interaction strength, can be tuned to any value. This offers prospects for experimental access to regimes where the behavior is not well understood because interactions are strong, atom-atom correlations are important, mean-field theory is inadequate, and equilibrium may not be reached or perhaps does not even exist. Of particular interest is the unitary gas, where $a$ is infinite, and where many aspects of the system are universal in that they depend only on the particle density and quantum statistics. While the unitary Fermi gas has been the subject of intense experimental and theoretical investigation, the degenerate unitary Bose gas has generally been deemed experimentally inaccessible because of three-body loss rates that increase dramatically with increasing $a$. Here, we investigate dynamics of a unitary Bose gas for timescales that are short compared to the loss. We find that the momentum distribution of the unitary Bose gas evolves on timescales fast compared to losses, and that both the timescale for this evolution and the limiting shape of the momentum distribution are consistent with universal scaling with density. This work demonstrates that a unitary Bose gas can be created and probed dynamically, and thus opens the door for further exploration of this novel strongly interacting quantum liquid.
A proposed paradigm for out-of-equilibrium quantum systems is that an analogue of quantum phase transitions exists between parameter regimes of qualitatively distinct time-dependent behavior. Here, we present evidence of such a transition between dyn amical phases in a cold-atom quantum simulator of the collective Heisenberg model. Our simulator encodes spin in the hyperfine states of ultracold fermionic potassium. Atoms are pinned in a network of single-particle modes, whose spatial extent emulates the long-range interactions of traditional quantum magnets. We find that below a critical interaction strength, magnetization of an initially polarized fermionic gas decays quickly, while above the transition point, the magnetization becomes long-lived, due to an energy gap that protects against dephasing by the inhomogeneous axial field. Our quantum simulation reveals a non-equilibrium transition predicted to exist but not yet directly observed in quenched s-wave superconductors.
We investigate qubit lasing in the strong coupling limit. The qubit is given by a Cooper-pair box, and population inversion is established by an additional third state, which can be addressed via quasiparticle tunneling. The coupling strength between oscillator and qubit is assumed to be much higher than the quasiparticle tunneling rate. We find that the photon number distribution is sub-Poissonian in this strong coupling limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا