ﻻ يوجد ملخص باللغة العربية
We study an electrostatic qubit monitored by a point-contact detector. Projecting an entire qubit-detector wave function on the detector eigenstates we determine the precision limit for the qubit measurements, allowed by quantum mechanics. We found that this quantity is determined by qubit dynamics as well as decoherence, generated by the measurement. Our results show how the quantum precision limit can be improved by a proper design of a measurement procedure.
Quantum noise places a fundamental limit on the per photon sensitivity attainable in optical measurements. This limit is of particular importance in biological measurements, where the optical power must be constrained to avoid damage to the specimen.
We propose and demonstrate experimentally a projection scheme to measure the quantum phase with a precision beating the standard quantum limit. The initial input state is a twin Fock state $|N,N>$ proposed by Holland and Burnett [Phys. Rev. Lett. {bf
Modern development of quantum technologies based on quantum information theory stimulated analysis of proposed computational, cryptographic and teleportational schemes from the viewpoint of quantum foundations. It is evident that not all mathematical
Entanglement generation at a macroscopic scale offers an exciting avenue to develop new quantum technologies and study fundamental physics on a tabletop. Cavity quantum optomechanics provides an ideal platform to generate and exploit such phenomena o
Precision measurement of non-linear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a r