ترغب بنشر مسار تعليمي؟ اضغط هنا

Depolarisation cooling of an atomic cloud

71   0   0.0 ( 0 )
 نشر من قبل Sven Hensler
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a cooling scheme based on depolarisation of a polarised cloud of trapped atoms. Similar to adiabatic demagnetisation, we suggest to use the coupling between the internal spin reservoir of the cloud and the external kinetic reservoir via dipolar relaxation to reduce the temperature of the cloud. By optical pumping one can cool the spin reservoir and force the cooling process. In case of a trapped gas of dipolar chromium atoms, we show that this cooling technique can be performed continuously and used to approach the critical phase space density for BEC

قيم البحث

اقرأ أيضاً

102 - Oxana Mishina 2014
While cavity cooling of a single trapped emitter was demonstrated, cooling of many particles in an array of harmonic traps needs investigation and poses a question of scalability. This work investigates the cooling of a one dimensional atomic array t o the ground state of motion via the interaction with the single mode field of a high-finesse cavity. The key factor ensuring the cooling is found to be the mechanical inhomogeneity of the traps. Furthermore it is shown that the pumped cavity mode does not only mediate the cooling but also provides the necessary inhomogeneity if its periodicity differs from the one of the array. This configuration results in the ground state cooling of several tens of atoms within a few milliseconds, a timescale compatible with current experimental conditions. Moreover, the cooling rate scaling with the atom number reveals a drastic change of the dynamics with the size of the array: atoms are either cooled independently, or via collective modes. In the latter case the cavity mediated atom interaction destructively slows down the cooling as well as increases the mean occupation number, quadratically with the atom number. Finally, an order of magnitude speed up of the cooling is predicted as an outcome the optimization scheme based on the adjustment of the array versus the cavity mode periodicity.
We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster a nsatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
We propose a protocol for sympathetically cooling neutral atoms without destroying the quantum information stored in their internal states. This is achieved by designing state-insensitive Rydberg interactions between the data-carrying atoms and cold auxiliary atoms. The resulting interactions give rise to an effective phonon coupling, which leads to the transfer of heat from the data atoms to the auxiliary atoms, where the latter can be cooled by conventional methods. This can be used to extend the lifetime of quantum storage based on neutral atoms and can have applications for long quantum computations. The protocol can also be modified to realize state-insensitive interactions between the data and the auxiliary atoms but tunable and non-trivial interactions among the data atoms, allowing one to simultaneously cool and simulate a quantum spin-model.
We study the dynamics of a single collective excitation in a cold ensemble of atoms coupled to a one-dimensional waveguide. The coupling between the atoms and the photonic modes provides a coherent and a dissipative dynamics for this collective excit ation. While the dissipative part accounts for the collectively enhanced and directed emission of photons, we find a remarkable universal dynamics for increasing atom numbers exhibiting several revivals under the coherent part. While this phenomenon provides a limit on the intrinsic dephasing for such a collective excitation, a setup is presented, where this remarkable universal dynamics can be explored.
83 - Chang Huang , Shijie Chai , 2021
We utilize the dark state in a {Lambda}-type three-level system to cool an ensemble of 85Rb atoms in an optical lattice [Morigi et al., Phys. Rev. Lett. 85, 4458 (2000)]. The common suppression of the carrier transition of atoms with different vibrat ional frequencies allows them to reach a subrecoil temperature of 100 nK after being released from the optical lattice. A nearly zero vibrational quantum number is determined from the time-of-flight measurements and adiabatic expansion process. The features of sideband cooling are examined in various parameter spaces. Our results show that dark-state sideband cooling is a simple and compelling method for preparing a large ensemble of atoms into their vibrational ground state of a harmonic potential and can be generalized to different species of atoms and molecules for studying ultracold physics that demands recoil temperature and below.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا