ﻻ يوجد ملخص باللغة العربية
We propose periodically-modulated entangled states of light and show that they can be generated in two experimentally feasible schemes of nondegenerate optical parametric oscillator (NOPO): (i) driven by continuously modulated pump field; (ii) under action of a periodic sequence of identical laser pulses. We show that the time-modulation of the pump field amplitude essentially improves the degree of continuous-variable entanglement in NOPO. We develop semiclassical and quantum theories of these devices for both below- and above-threshold regimes. Our analytical results are in well agrement with numerical simulation and support a concept of time-modulated entangled states.
When applied to dynamical systems, both classical and quantum, time periodic modulations can produce complex non-equilibrium states which are often termed chaotic`. Being well understood within the unitary Hamiltonian framework, this phenomenon is le
We study the scattering of photons from periodically modulated quantum-optical systems. For excitation-number conserving quantum optical systems, we connect the analytic structure of the frequency-domain N-photon scattering matrix of the system to th
The authors demonstrate a form of two-photon-counting interferometry by measuring the coincidence counts between single-photon-counting detectors at an output port of a Mach-Zehnder Interferometer (MZI) following injection of broad-band time-frequenc
In this paper, we address the issue of the generation of non-degenerate cross-polarization-entangled photon pairs using type-II periodically poled lithium niobate. We show that, by an appropriate engineering of the quasi-phase-matching grating, it is
A novel method of macroscopically entangled light-pair generation is presented for a quantum laser using randomness-based deterministic phase control of coherent light in a Mach-Zehnder interferometer (MZI). Unlike the particle nature-based quantum c