ﻻ يوجد ملخص باللغة العربية
The strong-field approximation can be and has been applied in both length gauge and velocity gauge with quantitatively conflicting answers. For ionization of negative ions with a ground state of odd parity, the predictions of the two gauges differ qualitatively: in the envelope of the angular-resolved energy spectrum, dips in one gauge correspond to humps in the other. We show that the length-gauge SFA matches the exact numerical solution of the time-dependent Schrodinger equation.
We present a simple quantum mechanical model to describe Coulomb explosion of H$_2^+$ by short, intense, infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid for pulses shorter
The quasistatic limit of the velocity-gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linear polarized laser fields is derived. It is shown that in the low-frequency limit the ionization rate
The gauge problem in the so-called strong-field approximation (SFA) describing atomic or molecular systems exposed to intense laser fields is investigated. Introducing a generalized gauge and partitioning of the Hamiltonian it is demonstrated that th
We consider the ionisation of atomic hydrogen by a strong infrared field. We extend and study in more depth an existing semi-analytical model. Starting from the time-dependent Schroedinger equation in momentum space and in the velocity gauge we subst
The spontaneous emission of an excited two-level emitter driven by a strong classical coherent low-frequency electromagnetic field is investigated. We find that for relatively strong laser driving, multi-photon processes are induced, thereby opening