ﻻ يوجد ملخص باللغة العربية
Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing (CARL), i.e. cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of the CARL process.
We develop the theory of propagation of laser wave in a gas of two-level atoms (with an optical transition frequency $omega^{}_0$) under the condition of inhomogeneous Doppler broadening, considering the self-consistent solution of the Maxwell-Bloch
An analytical perturbation theory of short-pulse, matter-wave superradiant scatterings is presented. We show that Bragg resonant enhancement is incapacitated and both positive and negative order scatterings contribute equally. We further show that pr
We consider the fundamental problem of high temperature phase transitions in the system of high density two-level atoms off-resonantly interacting with a pump field in the presence of optical collisions (OCs) and placed in the cavity. OCs are conside
We consider physical processes caused by the twisted photons for a wide range of energy scales, from optical (eV) to nuclear (MeV) to high-energy gamma-rays (TeV). We demonstrate that in order to satisfy angular momentum conservation, absorption of a
We explore the environment-induced synchronization phenomenon in two-level systems in contact with a thermal dissipative environment. We first discuss the conditions under which synchronization emerges between a pair of two-level particles. That is,