ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective atomic recoil motion in short-pulse multi-matter-optical wave mixing

210   0   0.0 ( 0 )
 نشر من قبل Lu Deng
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An analytical perturbation theory of short-pulse, matter-wave superradiant scatterings is presented. We show that Bragg resonant enhancement is incapacitated and both positive and negative order scatterings contribute equally. We further show that propagation gain is small and scattering events primarily occur at the end of the condensate where the generated field has maximum strength, thereby explaining the apparent ``asymmetry in the scattered components with respect to the condensate center. In addition, the generated field travels near the speed of light in a vacuum, resulting in significant spontaneous emission when the one-photon detuning is not sufficiently large. Finally, we show that when the excitation rate increases, the generated-field front-edge-steepening and peak forward-shifting effects are due to depletion of the ground state matter wave.



قيم البحث

اقرأ أيضاً

We demonstrate clear collective atomic recoil motion in a dilute, momentum-squeezed, ultra-cold degenerate fermion gas by circumventing the effects of Pauli blocking. Although gain from bosonic stimulation is necessarily absent because the quantum ga s obeys Fermi-Dirac statistics, collective atomic recoil motion from the underlying wave-mixing process is clearly visible. With a single pump pulse of the proper polarization, we observe two mutually-perpendicular wave-mixing processes occurring simultaneously. Our experiments also indicate that the red-blue pump detuning asymmetry observed with Bose-Einstein condensates does not occur with fermions.
212 - L. Deng , E.W. Hagley 2010
We study a highly efficient, matter-wave amplification mechanism in a longitudinally-excited, Bose-Einstein condensate and reveal a very large enhancement due to nonlinear gain from a sixmatter- optical, wave-mixing process involving four photons. Un der suitable conditions this opticallydegenerate, four-photon process can be stronger than the usual two-photon inelastic light scattering mechanism, leading to nonlinear growth of the observed matter-wave scattering independent of any enhancement from bosonic stimulation. Our theoretical framework can be extended to encompass even higher-order, nonlinear superradiant processes that result in higher-order momentum transfer.
The polariton, a quasiparticle formed by strong coupling of a photon to a matter excitation, is a fundamental ingredient of emergent photonic quantum systems ranging from semiconductor nanophotonics to circuit quantum electrodynamics. Exploiting the interaction between polaritons has led to the realization of superfluids of light as well as of strongly correlated phases in the microwave domain, with similar efforts underway for microcavity exciton-polaritons. Here, we develop an ultracold-atom analogue of an exciton-polariton system in which interacting polaritonic phases can be studied with full tunability and without dissipation. In our optical-lattice system, the exciton is replaced by an atomic excitation, while an atomic matter wave is substituted for the photon under a strong dynamical coupling. We access the band structure of the matter-wave polariton spectroscopically by coupling the upper and lower polariton branches, and explore polaritonic many-body transport in the superfluid and Mott-insulating regimes, finding quantitative agreement with our theoretical expectations. Our work opens up novel possibilities for studies of polaritonic quantum matter.
A superfluid atomic gas is prepared inside an optical resonator with an ultra-narrow band width on the order of the single photon recoil energy. When a monochromatic off-resonant laser beam irradiates the atoms, above a critical intensity the cavity emits superradiant light pulses with a duration on the order of its photon storage time. The atoms are collectively scattered into coherent superpositions of discrete momentum states, which can be precisely controlled by adjusting the cavity resonance frequency. With appropriate pulse sequences the entire atomic sample can be collectively accelerated or decelerated by multiples of two recoil momenta. The instability boundary for the onset of matter wave superradiance is recorded and its main features are explained by a mean field model.
We study the collapse and revival of interference patterns in the momentum distribution of atoms in optical lattices, using a projection technique to properly account for the fixed total number of atoms in the system. We consider the common experimen tal situation in which weakly interacting bosons are loaded into a shallow lattice, which is suddenly made deep. The collapse and revival of peaks in the momentum distribution is then driven by interactions in a lattice with essentially no tunnelling. The projection technique allows to us to treat inhomogeneous (trapped) systems exactly in the case that non-interacting bosons are loaded into the system initially, and we use time-dependent density matrix renormalization group techniques to study the system in the case of finite tunnelling in the lattice and finite initial interactions. For systems of more than a few sites and particles, we find good agreement with results calculated via a naive approach, in which the state at each lattice site is described by a coherent state in the particle occupation number. However, for systems on the order of 10 lattice sites, we find experimentally measurable discrepancies to the results predicted by this standard approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا