ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisional decoherence reexamined

58   0   0.0 ( 0 )
 نشر من قبل Klaus Hornberger
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We re-derive the quantum master equation for the decoherence of a massive Brownian particle due to collisions with the lighter particles from a thermal environment. Our careful treatment avoids the occurrence of squares of Dirac delta functions. It leads to a decoherence rate which is smaller by a factor of 2 pi compared to previous findings. This result, which is in agreement with recent experiments, is confirmed by both a physical analysis of the problem and by a perturbative calculation in the weak coupling limit.



قيم البحث

اقرأ أيضاً

The decoherence of a two-state tunneling molecule, such as a chiral molecule or ammonia, due to collisions with a buffer gas is analyzed in terms of a succession of quantum states of the molecule satisfying the conditions for a consistent family of h istories. With $hbar omega$ the separation in energy of the levels in the isolated molecule and $gamma$ a decoherence rate proportional to the rate of collisions, we find for $gamma gg omega$ (strong decoherence) a consistent family in which the molecule flips randomly back and forth between the left- and right-handed chiral states in a stationary Markov process. For $gamma < omega$ there is a family in which the molecule oscillates continuously between the different chiral states, but with occasional random changes of phase, at a frequency that goes to zero at a phase transition $gamma = omega$. This transition is similar to the behavior of the inversion frequency of ammonia with increasing pressure, but will be difficult to observe in chiral molecules such as D$_2$S$_2$. There are additional consistent families both for $gamma > omega$ and for $gamma < omega$. In addition we relate the speed with which chiral information is transferred to the environment to the rate of decrease of complementary types of information (e.g., parity information) remaining in the molecule itself.
In a recent Letter [G. Chiribella et al., Phys. Rev. Lett. 98, 120501 (2007)], four protocols were proposed to secretly transmit a reference frame. Here We point out that in these protocols an eavesdropper can change the transmitted reference frame w ithout being detected, which means the consistency of the shared reference frames should be reexamined. The way to check the above consistency is discussed. It is shown that this problem is quite different from that in previous protocols of quantum cryptography.
We have quantified collisional losses, decoherence and the collision shift in a one-dimensional optical lattice clock with bosonic 88Sr. The lattice clock is referenced to the highly forbidden transition 1S0 - 3P0 at 698 nm, which becomes weakly allo wed due to state mixing in a homogeneous magnetic field. We were able to quantify three decoherence coefficients, which are due to dephasing collisions, inelastic collisions between atoms in the upper and lower clock state, and atoms in the upper clock state only. Based on the measured coefficients, we determine the operation parameters at which a 1D-lattice clock with 88Sr shows no degradation due to collisions on the relative accuracy level of 10-16.
We introduce a general framework for thermometry based on collisional models, where ancillas probe the temperature of the environment through an intermediary system. This allows for the generation of correlated ancillas even if they are initially ind ependent. Using tools from parameter estimation theory, we show through a minimal qubit model that individual ancillas can already outperform the thermal Cramer-Rao bound. In addition, due to the steady-state nature of our model, when measured collectively the ancillas always exhibit superlinear scalings of the Fisher information. This means that even collective measurements on pairs of ancillas will already lead to an advantage. As we find in our qubit model, such a feature may be particularly valuable for weak system-ancilla interactions. Our approach sets forth the notion of metrology in a sequential interactions setting, and may inspire further advances in quantum thermometry.
This paper reexamines the physical roles of trapped and passing electrons in electron Bernstein-Greene-Kruskal (BGK) solitary waves, also called the BGK phase space electron holes (EH). It is shown that the charge density variation in the vicinity of the solitary potential is a net balance of the negative charge from trapped electrons and positive charge due to the decrease of the passing electron density. A BGK EH consists of electron density enhancements as well as a density depletion, instead of only the density depletion as previously thought. The shielding of the positive core is not a thermal screening by the ambient plasma, but achieved by trapped electrons oscillating inside the potential energy trough. The total charge of a BGK EH is therefore zero. Two separated EHs do not interact and the concept of negative mass is not needed. These features are independent of the strength of the nonlinearity. BGK EHs do not require thermal screening, and their size is thus not restricted to be greater than the Debye length $lambda_D$. Our analysis predicts that BGK EHs smaller than $lambda_D$ can exist. A width($delta$)-amplitude($psi$) relation of an inequality form is obtained for BGK EHs in general. For empty-centered EHs with potential amplitude $gg 1$, we show that the width-amplitude relation of the form $deltaproptosqrt{psi}$ is common to bell-shaped potentials. For $psill 1$, the width approaches zero faster than $sqrt{psi}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا