ﻻ يوجد ملخص باللغة العربية
Starting point is a given semigroup of completely positive maps on the 2 times 2 matrices. This semigroup describes the irreversible evolution of a decaying 2-level atom. Using the integral-sum kernel approach to quantum stochastic calculus we couple the 2-level atom to an environment, which in our case will be interpreted as the electromagnetic field. The irreversible time evolution of the 2-level atom then stems from the reversible time evolution of atom and field together. Mathematically speaking, we have constructed a Markov dilation of the semigroup. The next step is to drive the atom by a laser and to count the photons emitted into the field by the decaying 2-level atom. For every possible sequence of photon counts we construct a map that gives the time evolution of the 2-level atom inferred by that sequence. The family of maps that we obtain in this way forms a so-called Davies process. In his book Davies describes the structure of these processes, which brings us into the field of quantum trajectories. Within our model we calculate the jump operators and we briefly describe the resulting counting process.
After a brief review of stochastic limit approximation with spin-boson system from physical points of view, amplification phenomenon-stochastic resonance phenomenon-in driven spin-boson system is observed which is helped by the quantum white noise in
We provide a class of quantum evolution beyond Markovian semigroup. This class is governed by a hybrid Davies like generator such that dissipation is controlled by a suitable memory kernel and decoherence by standard GKLS generator. These two process
There is a long history of representing a quantum state using a quasi-probability distribution: a distribution allowing negative values. In this paper we extend such representations to deal with quantum channels. The result is a convex, strongly mono
We theoretically demonstrate the enhanced and dephasing immune squeezing in the resonance fluorescence of a single quantum dot (QD) confined to a pillar-microcavity and driven by a continuous wave laser. We employ a formalism based on Polaron master
Resonant excitation of solid state quantum emitters has the potential to deterministically excite a localized exciton while ensuring a maximally coherent emission. In this work, we demonstrate the coherent coupling of an exciton localized in a lithog