ﻻ يوجد ملخص باللغة العربية
We theoretically demonstrate the enhanced and dephasing immune squeezing in the resonance fluorescence of a single quantum dot (QD) confined to a pillar-microcavity and driven by a continuous wave laser. We employ a formalism based on Polaron master equation theory for incorporating the influence of exciton-phonon coupling quite accurately in the dot-cavity system. We show a significant enhancement of squeezing due to cavity coupling of the QD as compared to that of an ideal single two-level system in free space. Particularly, we show a four-fold enhancement in squeezing as compared to that of a single QD without cavity coupling. We further demonstrate the persistence of squeezing even when the pure dephasing becomes greater than the radiative decay rate. These novel features are attributed to the cavity-enhanced coherence causing partial reduction of the deteriorating effects of phonon-induced incoherent rates. We also show that the deteriorating effects of phonon-induced incoherent rates on squeezing can be partially circumvented by properly adjusting the detunings.
Semiconductor quantum dots embedded in micro-pillar cavities are excellent emitters of single photons when pumped resonantly. Often, the same spatial mode is used to both resonantly excite a quantum dot and to collect the emitted single photons, requ
We report on the observation of bright emission of single photons under pulsed resonance fluorescence conditions from a single quantum dot (QD) in a micropillar cavity. The brightness of the QD fluorescence is greatly enhanced via the coupling to the
Coherence has been remaining a key resource for numerous applications of quantum physics ranging from quantum metrology to quantum information. Here, we report a theoretical work on how maximally created coherence results in the squeezing of cavity f
We show that resonance fluorescence, i.e. the resonant emission of a coherently driven two-level system, can be realized with a semiconductor quantum dot. The dot is embedded in a planar optical micro-cavity and excited in a wave-guide mode so as to
We study the processes in a quantum dot and its surrounds under resonant excitation with the addition of weak non-resonant light. We observe a decrease in inhomogeneous emission linewidth, as well as previously observed enhancement of resonant fluore