ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of Kerr nonlinearity via multi-photon coherence

143   0   0.0 ( 0 )
 نشر من قبل Irina Novikova
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.B. Matsko




اسأل ChatGPT حول البحث

We propose a new method of resonant enhancement of optical Kerr nonlinearity using multi-level atomic coherence. The enhancement is accompanied by suppression of the other linear and nonlinear susceptibility terms of the medium. We show that the effect results in a modification of the nonlinear Faraday rotation of light propagating in an Rb87 vapor cell by changing the ellipticity of the light.

قيم البحث

اقرأ أيضاً

Few-photon optomechanical effects are not only important physical evidences for understanding the radiation-pressure interaction between photons and mechanical oscillation, but also have wide potential applications in modern quantum technology. Here we study the few-photon optomechanical effects including photon blockade and generation of the Schr{o}dinger cat states under the assistance of a cross-Kerr interaction, which is an inherent interaction accompanied the optomechanical coupling in a generalized optomechanical system. By exactly diagonalizing the generalized optomechanical Hamiltonian and calculating its unitary evolution operator, we find the physical mechanism of the enhancement of photon blockade and single-photon mechanical displacement. The quantum properties in this generalized optomechanical system are studied by investigating the second-order correlation function of the cavity field and calculating the Wigner function and the probability distribution of the rotated quadrature operator for the mechanical mode. We also study the influence of the dissipations on the few-photon optomechanical effects.
Multi-photon entangled states of light are key to advancing quantum communication, computation, and metrology. Current methods for building such states are based on stitching together photons from probabilistic sources. The probability of $N$ such so urces firing simultaneously decreases exponentially with $N$, imposing severe limitations on the practically achievable number of coincident photons. We tackle this challenge with a quantum interference buffer (QIB), which combines three functionalities: firstly, it stores polarization qubits, enabling the use of polarization-entangled states as resource; secondly, it implements entangled-source multiplexing, greatly enhancing the resource-state generation rates; thirdly, it implements time-multiplexed, on-demand linear optical networks for interfering subsequent states. Using the QIB, we multiplex 21 Bell-state sources and demonstrate a nine-fold enhancement in the generation rate of four-photon GHZ states. The enhancement scales exponentially with the photon number; larger states benefit more strongly. Multiplexed photon entanglement and interference will find diverse applications in quantum photonics, allowing for practical realisations of multi-photon protocols.
We propose a scheme for enhancing the optomechanical coupling between microwave and mechanical resonators by up to seven orders of magnitude to the ultrastrong coupling limit in a circuit optomechanical setting. The tripartite system considered here consists of a Josephson junction Cooper-pair box that mediates the coupling between the microwave cavity and the mechanical resonator. The optomechanical coupling can be modified by tuning the gate charge and the magnetic flux bias of the Cooper-pair box which in turn affect the Josephson capacitance of the Cooper-pair box. We additionally show that with suitable choice of tuning parameters, the optomechanical coupling vanishes and the system exhibits purely a cross-Kerr type of nonlinearity between the cavity and the mechanical resonator. This allows the system to be used for phonon counting.
The coherence time constitutes one of the most critical parameters that determines whether or not interference is observed in an experiment. For photons, it is traditionally determined by the effective spectral bandwidth of the photon. Here we report on multi-photon interference experiments in which the multi-photon coherence time, defined by the width of the interference signal, depends on the number of interfering photons and on the measurement scheme chosen to detect the particles. A theoretical analysis reveals that all multi-photon interference with more than two particles features this dependence, which can be attributed to higher-order effects in the mutual indistinguishability of the particles. As a striking consequence, a single, well-defined many-particle quantum state can exhibit qualitatively different degrees of interference, depending on the chosen observable. Therefore, optimal sensitivity in many-particle quantum interferometry can only be achieved by choosing a suitable detection scheme.
We study the photon blockade effect in a coupled cavity system, which is formed by a linear cavity coupled to a Kerr-type nonlinear cavity via a photon-hopping interaction. We explain the physical phenomenon from the viewpoint of the conventional and unconventional photon blockade effects. The corresponding physical mechanisms of the two kinds of photon blockade effects are based on the anharmonicity in the eigenenergy spectrum and the destructive quantum interference between two different transition paths, respectively. In particular, we find that the photon blockade via destructive quantum interference also exists in the conventional photon blockade regime, and that the unconventional photon blockade occurs in both the weak- and strong-Kerr nonlinearity cases. The photon blockade effect can be observed by calculating the second-order correlation function of the cavity field. This model is general and hence it can be implemented in various experimental setups such as coupled optical-cavity systems, coupled photon-magnon systems, and coupled superconducting-resonator systems. We present some discussions on the experimental feasibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا