ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity

107   0   0.0 ( 0 )
 نشر من قبل Jie-Qiao Liao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Few-photon optomechanical effects are not only important physical evidences for understanding the radiation-pressure interaction between photons and mechanical oscillation, but also have wide potential applications in modern quantum technology. Here we study the few-photon optomechanical effects including photon blockade and generation of the Schr{o}dinger cat states under the assistance of a cross-Kerr interaction, which is an inherent interaction accompanied the optomechanical coupling in a generalized optomechanical system. By exactly diagonalizing the generalized optomechanical Hamiltonian and calculating its unitary evolution operator, we find the physical mechanism of the enhancement of photon blockade and single-photon mechanical displacement. The quantum properties in this generalized optomechanical system are studied by investigating the second-order correlation function of the cavity field and calculating the Wigner function and the probability distribution of the rotated quadrature operator for the mechanical mode. We also study the influence of the dissipations on the few-photon optomechanical effects.



قيم البحث

اقرأ أيضاً

142 - A.B. Matsko 2002
We propose a new method of resonant enhancement of optical Kerr nonlinearity using multi-level atomic coherence. The enhancement is accompanied by suppression of the other linear and nonlinear susceptibility terms of the medium. We show that the effe ct results in a modification of the nonlinear Faraday rotation of light propagating in an Rb87 vapor cell by changing the ellipticity of the light.
We propose a scheme for enhancing the optomechanical coupling between microwave and mechanical resonators by up to seven orders of magnitude to the ultrastrong coupling limit in a circuit optomechanical setting. The tripartite system considered here consists of a Josephson junction Cooper-pair box that mediates the coupling between the microwave cavity and the mechanical resonator. The optomechanical coupling can be modified by tuning the gate charge and the magnetic flux bias of the Cooper-pair box which in turn affect the Josephson capacitance of the Cooper-pair box. We additionally show that with suitable choice of tuning parameters, the optomechanical coupling vanishes and the system exhibits purely a cross-Kerr type of nonlinearity between the cavity and the mechanical resonator. This allows the system to be used for phonon counting.
State measurement of a quantum harmonic oscillator is essential in quantum optics and quantum information processing. In a system of trapped ions, we experimentally demonstrate the projective measurement of the state of the ions motional mode via an effective cross-Kerr coupling to another motional mode. This coupling is induced by the intrinsic nonlinearity of the Coulomb interaction between the ions. We spectroscopically resolve the frequency shift of the motional sideband of the first mode due to presence of single phonons in the second mode and use it to reconstruct the phonon number distribution of the second mode.
79 - Yu-Bo Sheng , Lan Zhou 2016
Logic-qubit entanglement has attracted much attention in both quantum communication and quantum computation. Here, we present an efficient protocol to distill the logic-qubit entanglement with the help of cross-Kerr nonlinearity. This protocol not on ly can purify the logic bit-flip error and logic phase-flip error, but also can correct the physical bit-flip error completely. We use cross-Kerr nonlinearity to construct quantum nondemolition detectors. Our distillation protocol for logic-qubit entanglement may be useful for the practical applications in quantum information, especially in long-distance quantum communication.
We study cross-Kerr (CK) effect on an optomechanical system driven by two-tone fields. We show that in the presence of the CK effect, a bistable behavior of the mean photon number in the cavity becomes more robust against the fluctuations of the freq uency detuning between the cavity mode and the control field. The bistability can also be turned into a tri-stability within the experimentally accessible range of the system parameters. Also, we find that the symmetric profile of the optomechanically induced transparency is broken and the zero-absorption point is shifted in the presence of the CK effect. This shift can be used to measure the strength of the CK effect, and the asymmetric absorption profiles can be employed to engineer a high quality factor of the cavity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا