ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacuum Squeezing in Atomic Media via Self-Rotation

87   0   0.0 ( 0 )
 نشر من قبل Irina Novikova
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.B. Matsko




اسأل ChatGPT حول البحث

When linearly polarized light propagates through a medium in which elliptically polarized light would undergo self-rotation, squeezed vacuum can appear in the orthogonal polarization. A simple relationship between self-rotation and the degree of vacuum squeezing is developed. Taking into account absorption, we find the optimum conditions for squeezing in any medium that can produce self-rotation. We then find analytic expressions for the amount of vacuum squeezing produced by an atomic vapor when light is near-resonant with a transition between various low-angular-momentum states. Finally, we consider a gas of multi-level Rb atoms, and analyze squeezing for light tuned near the D-lines under realistic conditions.

قيم البحث

اقرأ أيضاً

The traversal of an elliptically polarized optical field through a thermal vapour cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing sque ezed light at atomic transition wavelengths. In this paper, we show results of the characterization of PSR in isotopically enhanced Rubidium-87 cells, performed in two independent laboratories. We observed that, contrary to earlier work, the presence of atomic noise in the thermal vapour overwhelms the observation of squeezing. We present a theory that contains atomic noise terms and show that a null result in squeezing is consistent with this theory.
We investigate theoretically the effects of vacuum-induced coherence (VIC) on magneto-optical rotation (MOR). We carry out a model study to show that VIC in the presence of a control laser and a magnetic field can lead to large enhancement in the rot ation of the plane of polarization of a linearly polarized weak laser with vanishing circular dichroism. This effect can be realized in cold molecular gases and may be used as a sensitive probe for VIC. Such a large MOR angle can also be used to detect weak magnetic field with large measurement sensitivity.
We provide a framework for understanding recent experiments on squeezing of a collective atomic pseudo-spin, induced by a homodyne measurement on off-resonant probe light interrogating the atoms. The detection of light decimates the atomic state dist ribution and we discuss the conditions under which the resulting reduced quantum fluctuations are metrologically relevant. In particular, we consider a dual probe scheme which benefits from a cancelation of classical common mode noise sources such that quantum fluctuations from light and atoms are the main contributions to the detected signal.
Accessing distinctly quantum aspects of the interaction between light and the position of a mechanical object has been an outstanding challenge to cavity-optomechanical systems. Only cold-atom implementations of cavity optomechanics have indicated ef fects of the quantum fluctuations in the optical radiation pressure force. Here we use such a system, in which quantum photon-number fluctuations significantly drive the center of mass of an atomic ensemble inside a Fabry-Perot cavity. We show that the optomechanical response both amplifies and ponderomotively squeezes the quantum light field. We also demonstrate that classical optical fluctuations can be attenuated by 26 dB or amplified by 20 dB with a weak input pump power of < 40 pW, and characterize the optomechanical amplifiers frequency-dependent gain and phase response in both the amplitude and phase-modulation quadratures.
Coherent diffusion pertains to the motion of atomic dipoles experiencing frequent collisions in vapor while maintaining their coherence. Recent theoretical and experimental studies on the effect of coherent diffusion on key Raman processes, namely Ra man spectroscopy, slow polariton propagation, and stored light, are reviewed in this Colloquium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا