ﻻ يوجد ملخص باللغة العربية
We provide a framework for understanding recent experiments on squeezing of a collective atomic pseudo-spin, induced by a homodyne measurement on off-resonant probe light interrogating the atoms. The detection of light decimates the atomic state distribution and we discuss the conditions under which the resulting reduced quantum fluctuations are metrologically relevant. In particular, we consider a dual probe scheme which benefits from a cancelation of classical common mode noise sources such that quantum fluctuations from light and atoms are the main contributions to the detected signal.
In this paper we describe that the optically pumped frequency standards can have frequency stability beyond the quantum noise limit by detecting the Ramsey resonance through the squeezed light. In this paper we report that instead of considering the
Our 2005 Physical Review Letter entitled Suppression of Spin-Projection Noise in Broadband Atomic Magnetometry (volume 94, 203002) relied heavily in its claims of experimental quantum-limited performance on the results of a prior publication from our
We use a quantum non-demolition measurement to generate a spin squeezed state and to create entanglement in a cloud of 10^5 cold cesium atoms, and for the first time operate an atomic clock improved by spin squeezing beyond the projection noise limit
Entangled atomic states, such as spin squeezed states, represent a promising resource for a new generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques can be used to substantially enhance the degree of spin sq
We discuss the theory and experimental considerations of a quantum feedback scheme for producing deterministically reproducible spin squeezing. Continuous nondemolition atom number measurement from monitoring a probe field conditionally squeezes the