ﻻ يوجد ملخص باللغة العربية
In this contribution we review the formal GNS construction developped in a previous preprint (q-alg/9607019), and formulate the usual WKB-expansion in flat 2n-dimensional phase space in terms of a GNS construction with a positive linear functional with support on a projectable Lagrangean submanifold defined as a graph of an exact one form dS. The main trick is a suitable form of the star-exponential of S.
Based on a closed formula for a star product of Wick type on $CP^n$, which has been discovered in an earlier article of the authors, we explicitly construct a subalgebra of the formal star-algebra (with coefficients contained in the uniformly dense s
Let X be a smooth algebraic variety over a field of characteristic 0. We introduce the notion of twisted associative (resp. Poisson) deformation of the structure sheaf O_X. These are stack-li
It is known that Wolf constructed a lot of examples of Super Calabi-Yau twistor spaces. We would like to introduce super Poisson structures on them via super twistor double fibrations. Moreover we define the structure of deformation quantization for such super Poisson manifolds.
We consider formal deformations of the Poisson algebra of functions (with singularities) on $T^*M$ which are Laurent polynomials of fibers. Tn the case: $dim M=1$ ($M=S^1, {bf R}$), there exists a non-trivial $star$-product on this algebra non-equivalent to the standard Moyal product.
In this review an overview on some recent developments in deformation quantization is given. After a general historical overview we motivate the basic definitions of star products and their equivalences both from a mathematical and a physical point o