ﻻ يوجد ملخص باللغة العربية
We consider formal deformations of the Poisson algebra of functions (with singularities) on $T^*M$ which are Laurent polynomials of fibers. Tn the case: $dim M=1$ ($M=S^1, {bf R}$), there exists a non-trivial $star$-product on this algebra non-equivalent to the standard Moyal product.
We give an explicit local formula for any formal deformation quantization, with separation of variables, on a Kahler manifold. The formula is given in terms of differential operators, parametrized by acyclic combinatorial graphs.
Deformation quantization conventionally is described in terms of multidifferential operators. Jet manifold technique is well-known provide the adequate formulation of theory of differential operators. We extended this formulation to the multidifferen
In this review an overview on some recent developments in deformation quantization is given. After a general historical overview we motivate the basic definitions of star products and their equivalences both from a mathematical and a physical point o
Let $alpha$ be a polynomial Poisson bivector on a finite-dimensional vector space $V$ over $mathbb{C}$. Then Kontsevich [K97] gives a formula for a quantization $fstar g$ of the algebra $S(V)^*$. We give a construction of an algebra with the PBW prop
We study deformation quantization of nonassociative algebras whose associator satisfies some symmetric relations. This study is expanded to a larger class of nonassociative algebras includind Leibniz algebras. We apply also to this class the rule of polarization-depolarization.