ﻻ يوجد ملخص باللغة العربية
A subtractionless method for solving Fermi surface sheets ({tt FSS}), from measured $n$-axis-projected momentum distribution histograms by two-dimensional angular correlation of the positron-electron annihilation radiation ({tt 2D-ACAR}) technique, is discussed. The window least squares statistical noise smoothing filter described in Adam {sl et al.}, NIM A, {bf 337} (1993) 188, is first refined such that the window free radial parameters ({tt WRP}) are optimally adapted to the data. In an ideal single crystal, the specific jumps induced in the {tt WRP} distribution by the existing Fermi surface jumps yield straightforward information on the resolved {tt FSS}. In a real crystal, the smearing of the derived {tt WRP} optimal values, which originates from positron annihilations with electrons at crystal imperfections, is ruled out by median smoothing of the obtained distribution, over symmetry defined stars of bins. The analysis of a gigacount {tt 2D-ACAR} spectrum, measured on the archetypal high-$T_c$ compound $YBasb{2}Cusb{3}Osb{7-delta}$ at room temperature, illustrates the method. Both electronic {tt FSS}, the ridge along $Gamma X$ direction and the pillbox centered at the $S$ point of the first Brillouin zone, are resolved.
The extraction of a physical law y=yo(x) from joint experimental data about x and y is treated. The joint, the marginal and the conditional probability density functions (PDF) are expressed by given data over an estimator whose kernel is the instrume
Redundancy of experimental data is the basic statistic from which the complexity of a natural phenomenon and the proper number of experiments needed for its exploration can be estimated. The redundancy is expressed by the entropy of information perta
In this paper, we consider a surrogate modeling approach using a data-driven nonparametric likelihood function constructed on a manifold on which the data lie (or to which they are close). The proposed method represents the likelihood function using
Elucidating physical mechanisms with statistical confidence from molecular dynamics simulations can be challenging owing to the many degrees of freedom that contribute to collective motions. To address this issue, we recently introduced a dynamical G
Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connec