ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameter estimation with data-driven nonparametric likelihood functions

111   0   0.0 ( 0 )
 نشر من قبل John Harlim
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider a surrogate modeling approach using a data-driven nonparametric likelihood function constructed on a manifold on which the data lie (or to which they are close). The proposed method represents the likelihood function using a spectral expansion formulation known as the kernel embedding of the conditional distribution. To respect the geometry of the data, we employ this spectral expansion using a set of data-driven basis functions obtained from the diffusion maps algorithm. The theoretical error estimate suggests that the error bound of the approximate data-driven likelihood function is independent of the variance of the basis functions, which allows us to determine the amount of training data for accurate likelihood function estimations. Supporting numerical results to demonstrate the robustness of the data-driven likelihood functions for parameter estimation are given on instructive examples involving stochastic and deterministic differential equations. When the dimension of the data manifold is strictly less than the dimension of the ambient space, we found that the proposed approach (which does not require the knowledge of the data manifold) is superior compared to likelihood functions constructed using standard parametric basis functions defined on the ambient coordinates. In an example where the data manifold is not smooth and unknown, the proposed method is more robust compared to an existing polynomial chaos surrogate model which assumes a parametric likelihood, the non-intrusive spectral projection.



قيم البحث

اقرأ أيضاً

113 - John Harlim 2018
Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connec ting the theory of probability, stochastic processes, functional analysis, numerical analysis, and differential geometry. It describes two classes of computational methods to leverage data for modeling dynamical systems. The first is concerned with data fitting algorithms to estimate parameters in parametric models that are postulated on the basis of physical or dynamical laws. The second class is on operator estimation, which uses the data to nonparametrically approximate the operator generated by the transition function of the underlying dynamical systems. This self-contained book is suitable for graduate studies in applied mathematics, statistics, and engineering. Carefully chosen elementary examples with supplementary MATLAB codes and appendices covering the relevant prerequisite materials are provided, making it suitable for self-study.
LISA is the upcoming space-based Gravitational Wave telescope. LISA Pathfinder, to be launched in the coming years, will prove and verify the detection principle of the fundamental Doppler link of LISA on a flight hardware identical in design to that of LISA. LISA Pathfinder will collect a picture of all noise disturbances possibly affecting LISA, achieving the unprecedented pureness of geodesic motion necessary for the detection of gravitational waves. The first steps of both missions will crucially depend on a very precise calibration of the key system parameters. Moreover, robust parameters estimation is of fundamental importance in the correct assessment of the residual force noise, an essential part of the data processing for LISA. In this paper we present a maximum likelihood parameter estimation technique in time domain being devised for this calibration and show its proficiency on simulated data and validation through Monte Carlo realizations of independent noise runs. We discuss its robustness to non-standard scenarios possibly arising during the real-life mission, as well as its independence to the initial guess and non-gaussianities. Furthermore, we apply the same technique to data produced in mission-like fashion during operational exercises with a realistic simulator provided by ESA.
160 - Joseph W. Fowler 2013
Straightforward methods for adapting the familiar chi^2 statistic to histograms of discrete events and other Poisson distributed data generally yield biased estimates of the parameters of a model. The bias can be important even when the total number of events is large. For the case of estimating a microcalorimeters energy resolution at 6 keV from the observed shape of the Mn K-alpha fluorescence spectrum, a poor choice of chi^2 can lead to biases of at least 10% in the estimated resolution when up to thousands of photons are observed. The best remedy is a Poisson maximum-likelihood fit, through a simple modification of the standard Levenberg-Marquardt algorithm for chi^2 minimization. Where the modification is not possible, another approach allows iterative approximation of the maximum-likelihood fit.
We present a maximum-likelihood method for parameter estimation in terahertz time-domain spectroscopy. We derive the likelihood function for a parameterized frequency response function, given a pair of time-domain waveforms with known time-dependent noise amplitudes. The method provides parameter estimates that are superior to other commonly-used methods, and provides a reliable measure of the goodness of fit. We also develop a simple noise model that is parameterized by three dominant sources, and derive the likelihood function for their amplitudes in terms of a set of repeated waveform measurements. We demonstrate the method with applications to material characterization.
387 - I. Grabec 2007
Redundancy of experimental data is the basic statistic from which the complexity of a natural phenomenon and the proper number of experiments needed for its exploration can be estimated. The redundancy is expressed by the entropy of information perta ining to the probability density function of experimental variables. Since the calculation of entropy is inconvenient due to integration over a range of variables, an approximate expression for redundancy is derived that includes only a sum over the set of experimental data about these variables. The approximation makes feasible an efficient estimation of the redundancy of data along with the related experimental information and information cost function. From the experimental information the complexity of the phenomenon can be simply estimated, while the proper number of experiments needed for its exploration can be determined from the minimum of the cost function. The performance of the approximate estimation of these statistics is demonstrated on two-dimensional normally distributed random data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا