ترغب بنشر مسار تعليمي؟ اضغط هنا

Super Shell Structure of the Magnetic Susceptibility

82   0   0.0 ( 0 )
 نشر من قبل S. Frauendorf
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic susceptibility of electrons confined to a spherical cavity or a circular billiard shows slow oscillations as a function of the number of electrons, which are a new manifestation of the Super Shell Structure found in the free energy of metal clusters. The relationship of the oscillations of the two different quantities is analyzed by means of semiclassical calculations, which are in quantitative agreement with quantal results.



قيم البحث

اقرأ أيضاً

Geometry, electronic structure, and magnetic properties of methylthiolate-stabilized Au$_{25}$L$_{18}$ and MnAu$_{24}$L$_{18}$ (L = SCH$_3$) clusters adsorbed on noble-metal (111) surfaces have been investigated by using spin-polarized density functi onal theory computations. The interaction between the cluster and the surface is found to be mediated by charge transfer mainly from or into the ligand monolayer. The electronic properties of the 13-atom metal core remain in all cases rather undisturbed as compared to the isolated clusters in gas phase. The Au$_{25}$L$_{18}$ cluster retains a clear HOMO - LUMO energy gap in the range of 0.7 eV to 1.0 eV depending on the surface. The ligand layer is able to decouple the electronic structure of the magnetic MnAu$_{24}$L$_{18}$ cluster from Au(111) surface, retaning a high local spin moment of close to 5 $mu_{B}$ arising from the spin-polarized Mn(3d) electrons. These computations imply that the thiolate monolayer-protected gold clusters may be used as promising building blocks with tunable energy gaps, tunneling barriers, and magnetic moments for applications in the area of electron and/or spin transport.
Correlation between geometry, electronic structure and magnetism of solids is both intriguing and elusive. This is particularly strongly manifested in small clusters, where a vast number of unusual structures appear. Here, we employ density functiona l theory in combination with a genetic search algorithm, GGA$+U$ and a hybrid functional to determine the structure of gas phase Fe$_{x}$O$_{y}^{+/0}$ clusters. For Fe$_{x}$O$_{y}$ cation clusters we also calculate the corresponding vibration spectra and compare them with experiments. We successfully identify Fe$_{3}$O$_{4}^{+}$, Fe$_{4}$O$_{5}^{+}$, Fe$_{4}$O$_{6}^{+}$, Fe$_{5}$O$_{7}^{+}$ and propose structures for Fe$_{6}$O$_{8}^{+}$. Within the triangular geometric structure of Fe$_{3}$O$_{4}^{+}$ a non-collinear, ferrimagnetic and ferromagnetic state are comparable in energy. Fe$_{4}$O$_{5}^{+}$ and Fe$_{4}$O$_{6}^{+}$ are ferrimagnetic with a residual magnetic moment of 1~muB{} due to ionization. Fe$_{5}$O$_{7}^{+}$ is ferrimagnetic due to the odd number of Fe atoms. We compare the electronic structure with bulk magnetite and find Fe$_{4}$O$_{5}^{+}$, Fe$_{4}$O$_{6}^{+}$, Fe$_{6}$O$_{8}^{+}$ to be mixed valence clusters. In contrast, in Fe$_{3}$O$_{4}^{+}$ and Fe$_{5}$O$_{7}^{+}$ all Fe are found to be trivalent.
We analyze using Poisson equation the spatial distributions of the positive charge of carbon atomic nuclei shell and negative charge of electron clouds forming the electrostatic potential of the C60 fullerene shell as a whole. We consider also the ca se when an extra positive charge appears inside C60 in course of e.g. photoionization of an endohedral A@C. We demonstrate that frequently used radial square-well potential U(r) simulating the C60 shell leads to nonphysical charge densities of the shell in both cases - without and with an extra positive charge inside. We conclude that the square well U(r) modified by adding a Coulomb-potential-like term does not describe the interior polarization of the shell by the electric charge located in the center of the C60 shell. We suggest another model potential, namely that of hyperbolic cosine shape with properly adjusted parameters that is able to describe the monopole polarization of C60 shell. As a concrete illustration, we have calculated the photoionization cross-sections of H@C60 taking into account the monopole polarization of the shell in the frame of suggested model. We demonstrate that proper account of this polarization does not change the photoionization cross-section.
We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-se ctions. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes polarizability into the Neon and Argon endohedrals polarization potential. As a result, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross-sections due to effect of fullerene polarization upon the endohedral polarization potential.
The many-body system comprising a He nucleus, three electrons, and a positron has been studied using the exact diagonalization technique. The purpose has been to clarify to which extent the system can be considered as a distinguishable positronium (P s) atom interacting with a He atom and, thereby, to pave the way to a practical atomistic modeling of Ps states and annihilation in matter. The maximum value of the distance between the positron and the nucleus is constrained and the Ps atom at different distances from the nucleus is identified from the electron and positron densities, as well as from the electron-positron distance and center-of-mass distributions. The polarization of the Ps atom increases as its distance from the nucleus decreases. A depletion of the He electron density, particularly large at low density values, has been observed. The ortho-Ps pick-off annihilation rate calculated as the overlap of the positron and the free He electron densities has to be corrected for the observed depletion, specially at large pores/voids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا