ترغب بنشر مسار تعليمي؟ اضغط هنا

A Simple Method for Calculating Quantum Effects on the Temperature Dependence of Bimolecular Reaction Rates: An Application to $CH_4 + H to CH_3 + H_2$

55   0   0.0 ( 0 )
 نشر من قبل David Goodson
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The temperature dependence of the rate of the reaction CH_4+H to CH_3+H_2 is studied using classical collision theory with a temperature-dependent effective potential derived from a path integral analysis. Analytical expressions are obtained for the effective potential and for the rate constant. The rate constant expressions use a temperature-dependent activation energy. They give better agreement with the available experimental results than do previous empirical fits. Since all but one of the parameters in the present expressions are obtained from theory, rather than by fitting to experimental reaction rates, the expressions can be expected to be more dependable than purely empirical expressions at temperatures above 2000 K or below 350 K, where experimental results are not available.

قيم البحث

اقرأ أيضاً

We present a new theoretical method to treat the atom diatom radiative association within a time independent approach. This method is an adaptation of the driven equations method developed for photodissociation. The bound states energies and wave fun ctions of the molecule are calculated exactly and used to propagate the overlap with the initial scattering wave function. In the second part of this paper, this approach is applied to the radiative association of the N2H- anion. The main features of the radiative association cross sections are analysed and the magnitude of the calculated rate coefficient at 10 Kelvin is used to discuss the existence of the N2H- in the interstellar medium which could be used as a tracer of both N2 and H-.
We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunn eling (CVT/$mu$OMT) were applied using a fitted potential energy surface [J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval $ 4 cdot 10^{-20}$ to $4 cdot 10^{-17}$ cm$^3$ s$^{-1}$ , demonstrating that even deuterat
The H + D_2^+(v=0,1 and 2) charge transfer reaction is studied using an accurate wave packet method, using recently proposed coupled diabatic potential energy surfaces. The state-to-state cross section is obtained for three different channels: non-re active charge transfer, reactive charge transfer, and exchange reaction. The three processes proceed via the electronic transition from the first excited to the ground electronic state. The cross section for the three processes increases with the initial vibrational excitation. The non-reactive charge transfer process is the dominant channel, whose branching ratio increases with collision energy, and it compares well with experimental measurements at collision energies around 0.5 eV. For lower energies the experimental cross section is considerably higher, suggesting that it corresponds to higher vibrational excitation of D_2^+(v) reactants. Further experimental studies of this reaction and isotopic variants are needed, where conditions are controlled to obtain a better analysis of the vibrational effects of the D_2^+ reagents.
The calculation of optimal structures in reaction-diffusion models is of great importance in many physicochemical systems. We propose here a simple method to monitor the number of interphases for long times by using a boundary flux condition as a con trol. We consider as an illustration a 1-D Allen-Cahn equation with Neumann boundary conditions. Numerical examples are given and perspectives for the application of this approach to electrochemical systems are discussed.
We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system exhibits a new resonant reaction behavior with rat e enhancement if an appropriately defined fluctuation decay length is of the order of the system size. Importantly, we find that in the proximity of resonance the standard reciprocal additivity law for diffusion and surface reaction rates is violated due to the dynamical coupling of multiple kinetic processes. Together, these findings may have important repercussions on the correct interpretation of various kinetic reaction problems in complex systems, as, e.g., in biomolecular association or catalysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا