ﻻ يوجد ملخص باللغة العربية
We show that the degeneracy parameter of a trapped Bose gas can be changed adiabatically in a reversible way, both in the Boltzmann regime and in the degenerate Bose regime. We have performed measurements on spin-polarized atomic hydrogen in the Boltzmann regime demonstrating reversible changes of the degeneracy parameter (phase-space density) by more than a factor of two. This result is in perfect agreement with theory. By extending our theoretical analysis to the quantum degenerate regime we predict that, starting close enough to the Bose-Einstein phase transition, one can cross the transition by an adiabatic change of the trap shape.
A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, would not only enable explorations of a large class of many-body physics phenomena, but could also be used for quantum information processing. We report on the
We experimentally study the energy-temperature relationship of a harmonically trapped Bose-Einstein condensate by transferring a known quantity of energy to the condensate and measuring the resulting temperature change. We consider two methods of hea
Following the experimental observation of bright matter-wave solitons [L. Khaykovich et al., Science v. 296, 1290 (2002); K. E. Strecker et al., Nature (London) v. 417, 150 (2002)], we develop a semi-phenomenological theory for soliton thermodynamics
We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional $^{87}$Rb Bose gas, and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepan
We provide a comprehensive theoretical framework for describing the dynamics of a single trapped ion interacting with a neutral buffer gas, thus extending our previous studies on buffer-gas cooling of ions beyond the critical mass ratio [B. Holtkemei