ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of a single trapped ion immersed in a buffer gas

80   0   0.0 ( 0 )
 نشر من قبل Bastian H\\\"oltkemeier
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a comprehensive theoretical framework for describing the dynamics of a single trapped ion interacting with a neutral buffer gas, thus extending our previous studies on buffer-gas cooling of ions beyond the critical mass ratio [B. Holtkemeier et al., Phys. Rev. Lett. 116, 233003 (2016)]. By transforming the collisional processes into a frame, where the ions micromotion is assigned to the buffer gas atoms, our model allows one to investigate the influence of non-homogeneous buffer gas configurations as well as higher multipole orders of the radio-frequency trap in great detail. Depending on the neutral-to-ion mass ratio, three regimes of sympathetic cooling are identified which are characterized by the form of the ions energy distribution in equilibrium. We provide analytic expressions and numerical simulations of the ions energy distribution, spatial profile and cooling rates for these different regimes. Based on these findings, a method for actively decreasing the ions energy by reducing the spatial expansion of the buffer gas arises (Forced Sympathetic Cooling).



قيم البحث

اقرأ أيضاً

111 - M. Green , J. Wodin , R. DeVoe 2007
Individual Ba ions are trapped in a gas-filled linear ion trap and observed with a high signal-to-noise ratio by resonance fluorescence. Single-ion storage times of ~5 min (~1 min) are achieved using He (Ar) as a buffer gas at pressures in the range 8e-5 - 4e-3 torr. Trap dynamics in buffer gases are experimentally studied in the simple case of single ions. In particular, the cooling effects of light gases such as He and Ar and the destabilizing properties of heavier gases such as Xe are studied. A simple model is offered to explain the observed phenomenology.
We compute the Rydberg spectrum of a single Ca$^+$ ion in a Paul trap by incorporating various internal and external coupling terms of the ion to the trap in the Hamiltonian. The coupling terms include spin-orbit coupling in Ca$^+$, charge (electron and ionic core) coupling to the radio frequency and static fields, ion-electron coupling in the Paul trap, and ion center-of-mass coupling. The electronic Rydberg states are precisely described by a one-electron model potential for e$^-$+Ca$^{2+}$, and accurate eigenenergies, quantum defect parameters, and static and tensor polarizabilities for a number of excited Rydberg states are obtained. The time-periodic rf Hamiltonian is expanded in the Floquet basis, and the trapping-field-broadened Rydberg lines are compared with recent observations of Ca$^+(23P)$ and Ca$^+(52F)$ Rydberg lines.
160 - T. Feldker , H. Furst , H. Hirzler 2019
Great advances in precision quantum measurement have been achieved with trapped ions and atomic gases at the lowest possible temperatures. These successes have inspired ideas to merge the two systems. In this way one can study the unique properties o f ionic impurities inside a quantum fluid or explore buffer gas cooling of the trapped ion quantum computer. Remarkably, in spite of its importance, experiments with atom-ion mixtures remained firmly confined to the classical collision regime. We report a collision energy of 1.15(0.23) times the $s$-wave energy (or 9.9(2.0)~$mu$K) for a trapped ytterbium ion in an ultracold lithium gas. We observed a deviation from classical Langevin theory by studying the spin-exchange dynamics, indicating quantum behavior in the atom-ion collisions. Our results open up numerous opportunities, such as the exploration of atom-ion Feshbach resonances, in analogy to neutral systems.
269 - T. Lindvall 2013
Many ion species commonly used for laser-cooled ion trapping studies have a low-lying metastable 2D3/2 state that can become populated due to spontaneous emission from the 2P1/2 excited state. This requires a repumper laser to maintain the ion in the Doppler cooling cycle. Typically the 2D3/2 state, or some of its hyperfine components if the ion has nuclear spin, has a higher multiplicity than the upper state of the repumping transition. This can lead to dark states, which have to be destabilized by an external magnetic field or by modulating the polarization of the repumper laser. We propose using unpolarized, incoherent amplified spontaneous emission (ASE) to drive the repumping transition. An ASE source offers several advantages compared to a laser. It prevents the buildup of dark states without external polarization modulation even in zero magnetic field, it can drive multiple hyperfine transitions simultaneously, and it requires no frequency stabilization. These features make it very compact and robust, which is essential for the development of practical, transportable optical ion clocks. We construct a theoretical model for the ASE radiation, including the possibility of the source being partially polarized. Using 88Sr+ as an example, the performance of the ASE source compared to a single-mode laser is analyzed by numerically solving the eight-level density matrix equations for the involved energy levels. Finally a reduced three-level system is derived, yielding a simple formula for the excited state population and scattering rate, which can be used to optimize the experimental parameters. The required ASE power spectral density can be obtained with current technology.
We describe rapid, random-access loading of a two-dimensional (2D) surface-electrode ion-trap array based on two crossed photo-ionization laser beams. With the use of a continuous flux of pre-cooled neutral atoms from a remotely-located source, we ac hieve loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive 2D arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا