ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-directed Eulerian growing networks

103   0   0.0 ( 0 )
 نشر من قبل Adolfo Paolo Masucci apm
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce and analyze a model of a multi-directed Eulerian network, that is a directed and weighted network where a path exists that passes through all the edges of the network once and only once. Networks of this type can be used to describe information networks such as human language or DNA chains. We are able to calculate the strength and degree distribution in this network and find that they both exhibit a power law with an exponent between 2 and 3. We then analyze the behavior of the accelerated version of the model and find that the strength distribution has a double slope power law behavior. Finally we introduce a non-Eulerian version of the model and find that the statistical topological properties remain unchanged. Our analytical results are compared with numerical simulations.



قيم البحث

اقرأ أيضاً

Previous work on undirected small-world networks established the paradigm that locally structured networks tend to have high density of short loops. On the other hand, many realistic networks are directed. Here we investigate the local organization o f directed networks and find, surprisingly, that real networks often have very few short loops as compared to random models. We develop a theory and derive conditions for determining if a given network has more or less loops than its randomized counterpart. These findings carry broad implications for structural and dynamical processes sustained by directed networks.
It has been shown recently that a specific class of path-dependent stochastic processes, which reduce their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such Sample Space Reducing processes (SSRP) offer an alternative new mechanism to understand the emergence of scaling in countless processes. The corresponding power law exponents were shown to be related to noise levels in the process. Here we show that the emergence of scaling is not limited to the simplest SSRPs, but holds for a huge domain of stochastic processes that are characterized by non-uniform prior distributions. We demonstrate mathematically that in the absence of noise the scaling exponents converge to $-1$ (Zipfs law) for almost all prior distributions. As a consequence it becomes possible to fully understand targeted diffusion on weighted directed networks and its associated scaling laws law in node visit distributions. The presence of cycles can be properly interpreted as playing the same role as noise in SSRPs and, accordingly, determine the scaling exponents. The result that Zipfs law emerges as a generic feature of diffusion on networks, regardless of its details, and that the exponent of visiting times is related to the amount of cycles in a network could be relevant for a series of applications in traffic-, transport- and supply chain management.
We study the Krapivsky-Redner (KR) network growth model but where new nodes can connect to any number of existing nodes, $m$, picked from a power-law distribution $p(m)sim m^{-alpha}$. Each of the $m$ new connections is still carried out as in the KR model with probability redirection $r$ (corresponding to degree exponent $gamma_{rm KR}=1+1/r$, in the original KR model). The possibility to connect to any number of nodes resembles a more realistic type of growth in several settings, such as social networks, routers networks, and networks of citations. Here we focus on the in-, out-, and total-degree distributions and on the potential tension between the degree exponent $alpha$, characterizing new connections (outgoing links), and the degree exponent $gamma_{rm KR}(r)$ dictated by the redirection mechanism.
Cycling is a promising solution to unsustainable car-centric urban transport systems. However, prevailing bicycle network development follows a slow and piecewise process, without taking into account the structural complexity of transportation networ ks. Here we explore systematically the topological limitations of urban bicycle network development. For 62 cities we study different variations of growing a synthetic bicycle network between an arbitrary set of points routed on the urban street network. We find initially decreasing returns on investment until a critical threshold, posing fundamental consequences to sustainable urban planning: Cities must invest into bicycle networks with the right growth strategy, and persistently, to surpass a critical mass. We also find pronounced overlaps of synthetically grown networks in cities with well-developed existing bicycle networks, showing that our model reflects reality. Growing networks from scratch makes our approach a generally applicable starting point for sustainable urban bicycle network planning with minimal data requirements.
Popularity is attractive -- this is the formula underlying preferential attachment, a popular explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribut ion of the number of connections that nodes have follows power laws observed in many real networks. Preferential attachment has been directly validated for some real networks, including the Internet. Preferential attachment can also be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks, or duplication. Here we show that popularity is just one dimension of attractiveness. Another dimension is similarity. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which popularity preference emerges from local optimization. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا