ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme robustness of scaling in sample space reducing processes explains Zipfs law in diffusion on directed networks

82   0   0.0 ( 0 )
 نشر من قبل Bernat Corominas-Murtra BCM
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been shown recently that a specific class of path-dependent stochastic processes, which reduce their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such Sample Space Reducing processes (SSRP) offer an alternative new mechanism to understand the emergence of scaling in countless processes. The corresponding power law exponents were shown to be related to noise levels in the process. Here we show that the emergence of scaling is not limited to the simplest SSRPs, but holds for a huge domain of stochastic processes that are characterized by non-uniform prior distributions. We demonstrate mathematically that in the absence of noise the scaling exponents converge to $-1$ (Zipfs law) for almost all prior distributions. As a consequence it becomes possible to fully understand targeted diffusion on weighted directed networks and its associated scaling laws law in node visit distributions. The presence of cycles can be properly interpreted as playing the same role as noise in SSRPs and, accordingly, determine the scaling exponents. The result that Zipfs law emerges as a generic feature of diffusion on networks, regardless of its details, and that the exponent of visiting times is related to the amount of cycles in a network could be relevant for a series of applications in traffic-, transport- and supply chain management.



قيم البحث

اقرأ أيضاً

The formation of sentences is a highly structured and history-dependent process. The probability of using a specific word in a sentence strongly depends on the history of word-usage earlier in that sentence. We study a simple history-dependent model of text generation assuming that the sample-space of word usage reduces along sentence formation, on average. We first show that the model explains the approximate Zipf law found in word frequencies as a direct consequence of sample-space reduction. We then empirically quantify the amount of sample-space reduction in the sentences of ten famous English books, by analysis of corresponding word-transition tables that capture which words can follow any given word in a text. We find a highly nested structure in these transition tables and show that this `nestedness is tightly related to the power law exponents of the observed word frequency distributions. With the proposed model it is possible to understand that the nestedness of a text can be the origin of the actual scaling exponent, and that deviations from the exact Zipf law can be understood by variations of the degree of nestedness on a book-by-book basis. On a theoretical level we are able to show that in case of weak nesting, Zipfs law breaks down in a fast transition. Unlike previous attempts to understand Zipfs law in language the sample-space reducing model is not based on assumptions of multiplicative, preferential, or self-organised critical mechanisms behind language formation, but simply used the empirically quantifiable parameter nestedness to understand the statistics of word frequencies.
Extreme events are emergent phenomena in multi-particle transport processes on complex networks. In practice, such events could range from power blackouts to call drops in cellular networks to traffic congestion on roads. All the earlier studies of e xtreme events on complex networks have focused only on the nodal events. If random walks are used to model transport process on a network, it is known that degree of the nodes determines the extreme event properties. In contrast, in this work, it is shown that extreme events on the edges display a distinct set of properties from that of the nodes. It is analytically shown that the probability for the occurrence of extreme events on an edge is independent of the degree of the nodes linked by the edge and is dependent only on the total number of edges on the network and the number of walkers on it. Further, it is also demonstrated that non-trivial correlations can exist between the extreme events on the nodes and the edges. These results are in agreement with the numerical simulations on synthetic and real-life networks.
We present new empirical evidence, based on millions of interactions on Twitter, confirming that human contacts scale with population sizes. We integrate such observations into a reaction-diffusion metapopulation framework providing an analytical exp ression for the global invasion threshold of a contagion process. Remarkably, the scaling of human contacts is found to facilitate the spreading dynamics. Our results show that the scaling properties of human interactions can significantly affect dynamical processes mediated by human contacts such as the spread of diseases, and ideas.
Previous work on undirected small-world networks established the paradigm that locally structured networks tend to have high density of short loops. On the other hand, many realistic networks are directed. Here we investigate the local organization o f directed networks and find, surprisingly, that real networks often have very few short loops as compared to random models. We develop a theory and derive conditions for determining if a given network has more or less loops than its randomized counterpart. These findings carry broad implications for structural and dynamical processes sustained by directed networks.
History-dependent processes are ubiquitous in natural and social systems. Many such stochastic processes, especially those that are associated with complex systems, become more constrained as they unfold, meaning that their sample-space, or their set of possible outcomes, reduces as they age. We demonstrate that these sample-space reducing (SSR) processes necessarily lead to Zipfs law in the rank distributions of their outcomes. We show that by adding noise to SSR processes the corresponding rank distributions remain exact power-laws, $p(x)sim x^{-lambda}$, where the exponent directly corresponds to the mixing ratio of the SSR process and noise. This allows us to give a precise meaning to the scaling exponent in terms of the degree to how much a given process reduces its sample-space as it unfolds. Noisy SSR processes further allow us to explain a wide range of scaling exponents in frequency distributions ranging from $alpha = 2$ to $infty$. We discuss several applications showing how SSR processes can be used to understand Zipfs law in word frequencies, and how they are related to diffusion processes in directed networks, or ageing processes such as in fragmentation processes. SSR processes provide a new alternative to understand the origin of scaling in complex systems without the recourse to multiplicative, preferential, or self-organised critical processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا