ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacuum Predictions and Measurements for an Internal Pellet Target

56   0   0.0 ( 0 )
 نشر من قبل Inti Lehmann
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements with low Z targets at internal experiments typically imply a gas load which deteriorates the ring vacuum. Future experiments need reliable estimates for the expected vacuum conditions in order to design 4-pi detectors closely surrounding the interaction area. We present a method for the calculation of the resulting vacuum of such a complex system using a Pellet Target. In order to test the method, a vacuum system with diagnostic tools has been set up and a Pellet Target was operated under realistic conditions. The results for the absolute vacuum agree within factors of two with the expected pressures.



قيم البحث

اقرأ أيضاً

The spin program at NICA using SPD and MPD requires high intensity polarized proton beam with high value of the beam polarization. First results on the measurements of the proton beam polarization performed at internal target at Nuclotron are reporte d. The polarization of the proton beam provided by new source of polarized ions has been measured at 500 MeV using quasielastic proton-proton scattering and DSS setup at internal target. The obtained value of the vertical polarization of ~35 % is consistent with the calculations taking into account the current magnetic optics of the Nuclotron injection line.
We have constructed and tested a novel plastic-scintillator-based solid-state active proton target for use in nuclear spectroscopic studies with nuclear reactions induced by an ion beam in inverse kinematics. The active target system, named Stack Str ucture Solid organic Scintillator Active Target (S4AT), consists of five layers of plastic scintillators, each with a 1-mm thickness. To determine the reaction point in the thickness direction, we exploit the difference in the energy losses due to the beam particle and the charged reaction product(s) in the scintillator material. S4AT offers the prospect of a relatively thick target while maintaining a good energy resolution. By considering the relative energy loss between different layers, the energy loss due to unreacted beam particles can be eliminated. Such procedure, made possible by the multi-layer structure, is essential to eliminate the effect of unreacted accompanying beam particles, thus enabling its operation at a moderate beam intensity of up to a few Mcps. We evaluated the performance of S4AT by measuring the elastic proton-proton scattering using a 70-MeV proton beam at Cyclotron and Radioisotope Center (CYRIC), Tohoku University.
We discuss the possibility to build a neutron target for nuclear reaction studies in inverse kinematics utilizing a storage ring and radioactive ion beams. The proposed neutron target is a specially designed spallation target surrounded by a large mo derator of heavy water (D$_2$O). We present the resulting neutron spectra and their properties as a target. We discuss possible realizations at different experimental facilities.
A multi-cell He gas-scintillator active target, designed for the measurement of photoreaction cross sections, is described. The target has four main chambers, giving an overall thickness of 0.103 $mathrm{g/cm^{2}}$ at an operating pressure of 2 MPa. Scintillations are read out by photomultiplier tubes and the addition of small amounts of $mathrm{N}_{2}$ to the He, to shift the scintillation emission from UV to visible, is discussed. First results of measurements at the MAX IV Laboratory tagged-photon facility show that the target has good timing resolution and can cope well with a high-flux photon beam. The determination of reaction cross sections from target yields relies on a Monte Carlo simulation, which considers scintillation light transport, photodisintegration processes in $^{4}mathrm{He}$, background photon interactions in target windows and interactions of the reaction-product particles in the gas and target container. The predictions of this simulation are compared to the measured target response.
We present first results from experimental data showing the capabilities of an Associated Particle Imaging system to measure carbon in soil and other elements. Specifically, we present results from a pre-mixed soil sample containing pure sand (SiO$_2 $) and 4% carbon by weight. Because the main isotopes of all those three elements emit characteristic high-energy gamma rays following inelastic neutron scattering, it is possible to measure their distribution with our instrument. A 3D resolution of several centimeters in all dimensions has been demonstrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا