ترغب بنشر مسار تعليمي؟ اضغط هنا

First results on the measurements of the proton beam polarization at internal target at Nuclotron

77   0   0.0 ( 0 )
 نشر من قبل Vladimir Ladygin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin program at NICA using SPD and MPD requires high intensity polarized proton beam with high value of the beam polarization. First results on the measurements of the proton beam polarization performed at internal target at Nuclotron are reported. The polarization of the proton beam provided by new source of polarized ions has been measured at 500 MeV using quasielastic proton-proton scattering and DSS setup at internal target. The obtained value of the vertical polarization of ~35 % is consistent with the calculations taking into account the current magnetic optics of the Nuclotron injection line.

قيم البحث

اقرأ أيضاً

The current deuteron beam polarimetry at Nuclotron is provided by the Internal Target polarimeter based on the use of the asymmetry in dp- elastic scattering at large angles in the cms at 270 MeV. The upgraded deuteron beam polarimeter has been used obtain the vector and tensor polarization during 2016/2017 runs for the DSS experimental program. The polarimeter has been used also for tuning of the polarized ion source parameters for 6 different spin modes.
The high design luminosity of the SuperKEKB electron-positron collider is expected to result in challenging levels of beam-induced backgrounds in the interaction region. Properly simulating and mitigating these backgrounds is critical to the success of the Belle~II experiment. We report on measurements performed with a suite of dedicated beam background detectors, collectively known as BEAST II, during the so-called Phase 1 commissioning run of SuperKEKB in 2016, which involved operation of both the high energy ring (HER) of 7 GeV electrons as well as the low energy ring (LER) of 4 GeV positrons. We describe the BEAST II detector systems, the simulation of beam backgrounds, and the measurements performed. The measurements include standard ones of dose rates versus accelerator conditions, and more novel investigations, such as bunch-by-bunch measurements of injection backgrounds and measurements sensitive to the energy spectrum and angular distribution of fast neutrons. We observe beam-gas, Touschek, beam-dust, and injection backgrounds. We do not observe significant synchrotron radiation, as expected. Measured LER beam-gas backgrounds and Touschek backgrounds in both rings are slightly elevated, on average three times larger than the levels predicted by simulation. HER beam-gas backgrounds are on on average two orders of magnitude larger than predicted. Systematic uncertainties and channel-to-channel variations are large, so that these excesses constitute only 1-2 sigma level effects. Neutron background rates are higher than predicted and should be studied further. We will measure the remaining beam background processes, due to colliding beams, in the imminent commissioning Phase 2. These backgrounds are expected to be the most critical for Belle II, to the point of necessitating replacement of detector components during the Phase 3 (full-luminosity) operation of SuperKEB.
A deuteron beam polarimeter has been constructed at the Internal Target Station at the Nuclotron of JINR. The polarimeter is based on spin-asymmetry measurements in the d-p elastic scattering at large angles and the deuteron kinetic energy of 270 M eV. It allows to measure vector and tensor components of the deuteron beam polarization simultaneously.
Measurements with low Z targets at internal experiments typically imply a gas load which deteriorates the ring vacuum. Future experiments need reliable estimates for the expected vacuum conditions in order to design 4-pi detectors closely surrounding the interaction area. We present a method for the calculation of the resulting vacuum of such a complex system using a Pellet Target. In order to test the method, a vacuum system with diagnostic tools has been set up and a Pellet Target was operated under realistic conditions. The results for the absolute vacuum agree within factors of two with the expected pressures.
The setups for precise measurements of the time structure of Nuclotron internal and slowly extracted beams are described in both hardware and software aspects. The CAMAC hardware is based on the use of the standard CAMAC modules developed and manufac tured at JINR. The data acquisition system software is implemented using the ngdp framework under the Unix-like operating system (OS) FreeBSD to allow the easy network distribution of the online data. It is demonstrated that the described setups are suitable for the continuous beam quality monitoring during the experiments performed at Nuclotron.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا