ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation between radiation processes in silicon and long-time degradation of detectors for high energy physics experiments

42   0   0.0 ( 0 )
 نشر من قبل Sorina Lazanu
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this contribution, the correlation between fundamental interaction processes induced by radiation in silicon and observable effects which limit the use of silicon detectors in high energy physics experiments is investigated in the frame of a phenomenological model which includes: generation of primary defects at irradiation starting from elementary interactions in silicon; kinetics of defects, effects at the p-n junction detector level. The effects due to irradiating particles (pions, protons, neutrons), to their flux, to the anisotropy of the threshold energy in silicon, to the impurity concentrations and resistivity of the starting material are investigated as time, fluence and temperature dependences of detector characteristics. The expected degradation of the electrical parameters of detectors in the complex hadron background fields at LHC & SLHC are predicted.


قيم البحث

اقرأ أيضاً

The irradiation represents a useful tool for determining the characteristics of defects in semiconductors as well as a method to evaluate their degradation, fact with important technological consequences. In this contribution, starting from available data on the degradation of silicon detector characteristics in radiation fields, these effects are explained in the frame of a model that supposes also the production of the SiFFCD defect due to irradiation. The displacement threshold energies - different for different crystallographic axes, considered as parameters of the model, are established and the results obtained could contribute to clarify these controversial aspects. Predictions of the degradation of electrical parameters (leakage current, effective carrier concentration and effective trapping probabilities for electrons and holes) of DOFZ silicon detectors in the hadron background of the LHC accelerator, supposing operation at -10 grdC are done. The non uniformity of the rate of production of primary defects and of complexes, as a function of depth, for incident particles with low kinetic energy was obtained by simulations in some particular and very simplifying assumptions, suggesting the possible important contribution of the low energy component of the background spectra to detector degradation.
406 - Xiangyang Ju 2020
Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems.
CMOS pixel sensors (CPS) represent a novel technological approach to building charged particle detectors. CMOS processes allow to integrate a sensing volume and readout electronics in a single silicon die allowing to build sensors with a small pixel pitch ($sim 20 mu m$) and low material budget ($sim 0.2-0.3% X_0$) per layer. These characteristics make CPS an attractive option for vertexing and tracking systems of high energy physics experiments. Moreover, thanks to the mass production industrial CMOS processes used for the manufacturing of CPS the fabrication construction cost can be significantly reduced in comparison to more standard semiconductor technologies. However, the attainable performance level of the CPS in terms of radiation hardness and readout speed is mostly determined by the fabrication parameters of the CMOS processes available on the market rather than by the CPS intrinsic potential. The permanent evolution of commercial CMOS processes towards smaller feature sizes and high resistivity epitaxial layers leads to the better radiation hardness and allows the implementation of accelerated readout circuits. The TowerJazz $0.18 mu m$ CMOS process being one of the most relevant examples recently became of interest for several future detector projects. The most imminent of these project is an upgrade of the Inner Tracking System (ITS) of the ALICE detector at LHC. It will be followed by the Micro-Vertex Detector (MVD) of the CBM experiment at FAIR. Other experiments like ILD consider CPS as one of the viable options for flavour tagging and tracking sub-systems.
76 - C.-P. Chao , S.-W. Chen , D. Gong 2020
Development of optical links with 850 nm multi-mode vertical-cavity surface-emitting lasers (VCSELs) has advanced to 25 Gbps in speed. For applications in high-energy experiments, the transceivers are required to be tolerant in radiation and particle fields. We report on prototyping of a miniature transmitter named MTx+, which is developed for high speed transmission with the dual-channel laser driver LOCld65 and 850 nm VCSELs packaged in TOSA format. The LOCld65 is fabricated in the TSMC 65 nm process and is packaged in the QFN-40 for assembly. The MTx+ modules and test kits were first made with PCB and components qualified for 10 Gbps applications, and were tested for achieving 14 Gbps. The data transfer rate of the MTx+ module is investigated further for the speed of up to 25 Gbps. The LOCld65 is examined with post-layout simulation and the module design upgraded with components including the TOSA qualified for 25 Gbps applications. The PCB material is replaced by the Panasonic MEGTRON6. The revised MTx+ is tested at 25 Gbps and the eye-diagram shows a mask margin of 22 %.
The response of silicon drift detectors (SDDs), which were mounted together with their preamplifiers inside a vacuum chamber, was studied in a temperature range from 100 K to 200 K. In particular, the energy resolution could be stabilized to about 15 0 eV at 6 keV between 130 K and 200 K, while the time resolution shows a temperature dependence of T^3 in this temperature range. To keep a variation of the X-ray peak positions within 1 eV, it is necessary to operate the preamplifier within a stability of 1 K around 280 K. A detailed investigation of this temperature influences on SDDs and preamplifiers is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا