ﻻ يوجد ملخص باللغة العربية
We present an experimental investigation of a novel low Reynolds number shear flow instability triggered by a chemical reaction. An acid-base reaction taking place at the interface between a Newtonian fluid and Carbopol-940 solution leads to a strong viscosity stratification, which locally destabilizes the flow. Our experimental observations are made in the context of a miscible displacement flow, for which the flow instability promotes local mixing and subsequently improves the displacement efficiency. The experimental study is complemented by a simplified normal mode analysis to shed light on the origin of the instability
Instability mechanism based on Coriolis force, on a rapidly rotating portable device handling shear thinning fluids such as blood, is of utmost importance for eventual detection of diseases by mixing with the suitable reagents. Motivated by this prop
In a shear flow particles migrate to their equilibrium positions in the microchannel. Here we demonstrate theoretically that if particles are inertial, this equilibrium can become unstable due to the Saffman lift force. We derive an expression for th
Interfacial stability is important for many processes involving heat and mass transfer across two immiscible phases. When this transfer takes place in the form of evaporation of a binary solution with one component being more volatile than the other,
The interaction of flexible structures with viscoelastic flows can result in very rich dynamics. In this paper, we present the results of the interactions between the flow of a viscoelastic polymer solution and a cantilevered beam in a confined micro
We report on progress on the free surface flow in the presence of submerged oscillating line sources (2D) or point sources (3D) when a simple shear flow is present varying linearly with depth. Such sources are in routine use as Green functions in the