ﻻ يوجد ملخص باللغة العربية
We present Lagrangian one-particle statistics from the Risoe PTV experiment of a turbulent flow. We estimate the Lagrangian Kolmogorov constant $C_0$ and find that it is affected by the large scale inhomogeneities of the flow. The pdf of temporal velocity increments are highly non-Gaussian for small times which we interpret as a consequence of intermittency. Using Extended Self-Similarity we manage to quantify the intermittency and find that the deviations from Kolmogorov 1941 similarity scaling is larger in the Lagrangian framework than in the Eulerian. Through the multifractal model we calculate the multifractal dimension spectrum.
The statistics of Lagrangian particles in turbulent flows is considered in the framework of a simple vortex model. Here, the turbulent velocity field is represented by a temporal sequence of Burgers vortices of different circulation, strain, and orie
We present an investigation of the statistics of velocity gradient related quantities, in particluar energy dissipation rate and enstrophy, along the trajectories of fluid tracers and of heavy/light particles advected by a homogeneous and isotropic t
We present a comparison of different particles velocity and acceleration statistics in two paradigmatic turbulent swirling flows: the von Karman flow in a laboratory experiment, and the Taylor-Green flow in direct numerical simulations. Tracers, as w
We investigate the response of large inertial particle to turbulent fluctuations in a inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are compa
We study the joint probability distributions of separation, $R$, and radial component of the relative velocity, $V_{rm R}$, of particles settling under gravity in a turbulent flow. We also obtain the moments of these distributions and analyze their a