ترغب بنشر مسار تعليمي؟ اضغط هنا

Velocity gradients statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame

146   0   0.0 ( 0 )
 نشر من قبل Enrico Calzavarini
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an investigation of the statistics of velocity gradient related quantities, in particluar energy dissipation rate and enstrophy, along the trajectories of fluid tracers and of heavy/light particles advected by a homogeneous and isotropic turbulent flow. The Refined Similarity Hypothesis (RSH) proposed by Kolmogorov and Oboukhov in 1962 is rephrased in the Lagrangian context and then tested along the particle trajectories. The study is performed on state-of-the-art numerical data resulting from numerical simulations up to Re~400 with 2048^3 collocation points. When particles have small inertia, we show that the Lagrangian formulation of the RSH is well verified for time lags larger than the typical response time of the particle. In contrast, in the large inertia limit when the particle response time approaches the integral-time-scale of the flow, particles behave nearly ballistic, and the Eulerian formulation of RSH holds in the inertial-range.



قيم البحث

اقرأ أيضاً

145 - J. Berg 2006
We present Lagrangian one-particle statistics from the Risoe PTV experiment of a turbulent flow. We estimate the Lagrangian Kolmogorov constant $C_0$ and find that it is affected by the large scale inhomogeneities of the flow. The pdf of temporal vel ocity increments are highly non-Gaussian for small times which we interpret as a consequence of intermittency. Using Extended Self-Similarity we manage to quantify the intermittency and find that the deviations from Kolmogorov 1941 similarity scaling is larger in the Lagrangian framework than in the Eulerian. Through the multifractal model we calculate the multifractal dimension spectrum.
A phenomenological theory of the fluctuations of velocity occurring in a fully developed homogeneous and isotropic turbulent flow is presented. The focus is made on the fluctuations of the spatial (Eulerian) and temporal (Lagrangian) velocity increme nts. The universal nature of the intermittency phenomenon as observed in experimental measurements and numerical simulations is shown to be fully taken into account by the multiscale picture proposed by the multifractal formalism, and its extensions to the dissipative scales and to the Lagrangian framework. The article is devoted to the presentation of these arguments and to their comparisons against empirical data. In particular, explicit predictions of the statistics, such as probability density functions and high order moments, of the velocity gradients and acceleration are derived. In the Eulerian framework, at a given Reynolds number, they are shown to depend on a single parameter function called the singularity spectrum and to a universal constant governing the transition between the inertial and dissipative ranges. The Lagrangian singularity spectrum compares well with its Eulerian counterpart by a transformation based on incompressibility, homogeneity and isotropy and the remaining constant is shown to be difficult to estimate on empirical data. It is finally underlined the limitations of the increment to quantify accurately the singular nature of Lagrangian velocity. This is confirmed using higher order increments unbiased by the presence of linear trends, as they are observed on velocity along a trajectory.
The statistics of Lagrangian particles in turbulent flows is considered in the framework of a simple vortex model. Here, the turbulent velocity field is represented by a temporal sequence of Burgers vortices of different circulation, strain, and orie ntation. Based on suitable assumptions about the vortices statistical properties, the statistics of the velocity increments is derived. In particular, the origin and nature of small-scale intermittency in this model is investigated both numerically and analytically.
We present a comparison of different particles velocity and acceleration statistics in two paradigmatic turbulent swirling flows: the von Karman flow in a laboratory experiment, and the Taylor-Green flow in direct numerical simulations. Tracers, as w ell as inertial particles, are considered. Results indicate that, in spite of the differences in boundary conditions and forcing mechanisms, scaling properties and statistical quantities reveal similarities between both flows, pointing to new methods to calibrate and compare models for particles dynamics in numerical simulations, as well as to characterize the dynamics of particles in simulations and experiments.
We develop a stochastic model for the velocity gradients dynamics along a Lagrangian trajectory. Comparing with different attempts proposed in the literature, the present model, at the cost of introducing a free parameter known in turbulence phenomen ology as the intermittency coefficient, gives a realistic picture of velocity gradient statistics at any Reynolds number. To achieve this level of accuracy, we use as a first modelling step a regularized self-stretching term in the framework of the Recent Fluid Deformation (RFD) approximation that was shown to give a realistic picture of small scales statistics of turbulence only up to moderate Reynolds numbers. As a second step, we constrain the dynamics, in the spirit of Girimaji & Pope (1990), in order to impose a peculiar statistical structure to the dissipation seen by the Lagrangian particle. This probabilistic closure uses as a building block a random field that fulfils the statistical description of the intermittency, i.e. multifractal, phenomenon. To do so, we define and generalize to a statistically stationary framework a proposition made by Schmitt (2003). These considerations lead us to propose a non-linear and non-Markovian closed dynamics for the elements of the velocity gradient tensor. We numerically integrate this dynamics and observe that a stationary regime is indeed reached, in which (i) the gradients variance is proportional to the Reynolds number, (ii) gradients are typically correlated over the (small) Kolmogorov time scale and gradients norms over the (large) integral time scale (iii) the joint probability distribution function of the two non vanishing invariants $Q$ and $R$ reproduces the characteristic teardrop shape, (iv) vorticity gets preferentially aligned with the intermediate eigendirection of the deformation tensor and (v) gradients are strongly non-Gaussian and intermittent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا