ﻻ يوجد ملخص باللغة العربية
To investigate the finite time singularity in three-dimensional (3D) Euler flows, the simplified model of 3D axisymmetric incompressible fluids (i.e., two-dimensional Boussinesq approximation equations) is studied numerically. The system describes a cap-like hot zone of fluid rising from the bottom, while the edges of the cap lag behind, forming eye-like vortices. The hot liquid is driven by the buoyancy and meanwhile attracted by the vortices, which leads to the singularity-forming mechanism in our simulation. In the previous 2D Boussinesq simulations, the symmetricial initial data is used. However, it is observed that the adoption of symmetry leads to coordinate singularity. Moreover, as demonstrated in this work that the locations of peak values for the vorticity and the temperature gradient becomes far apart as $t$ approaches the predicted blow-up time. This suggests that the symmetry assumption may be unreasonable for searching solution blow-ups. One of the main contributions of this work is to propose an appropriate asymmetric initial condition, which avoids coordinate singularity and also makes the blow-up to occur much earlier than that given by the previously simulations. The shorter simulation time suppresses the development of the round-off error. On the numerical side, the pseudo-spectral method with filtering technique is adopted. The resolutions adopted in this study vary from $1024^2$, $2048^2$, $4096^2$ to $6144^2$. With our proposed asymmetric initial condition, it is shown that the $4096^2$ and $6144^2$ runs yield convergent results when $t$ is fairly close to the predicted blow-up time. Moreover, as expected the locations of peak values for the vorticity and the temperature gradient are very close to each other as $t$ approaches the predicted blow-up time.
Most fluid flow problems that are vital in engineering applications involve at least one of the following features: turbulence, shocks, and/or material interfaces. While seemingly different phenomena, these flows all share continuous generation of hi
The study focuses on the 3D electro-hydrodynamic (EHD) instability for flow between to parallel electrodes with unipolar charge injection with and without cross-flow. Lattice Boltzmann Method (LBM) with two-relaxation time (TRT) model is used to stud
We numerically analyze Non-Oberbeck-Boussinesq (NOB) effects in two-dimensional Rayleigh-Benard flow in glycerol, which shows a dramatic change in the viscosity with temperature. The results are presented both as functions of the Rayleigh number (Ra)
In this numerical study, an original approach to simulate non-isothermal viscoelastic fluid flows at high Weissenberg numbers is presented. Stable computations over a wide range of Weissenberg numbers are assured by using the root conformation approa
Using complementary numerical approaches at high resolution, we study the late-time behaviour of an inviscid, incompressible two-dimensional flow on the surface of a sphere. Starting from a random initial vorticity field comprised of a small set of i